共查询到20条相似文献,搜索用时 15 毫秒
1.
Gao-Bin Pu Dong-Ming Ma Jian-Lin Chen Lan-Qing Ma Hong Wang Guo-Feng Li He-Chun Ye Ben-Ye Liu 《Plant cell reports》2009,28(7):1127-1135
This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin.
In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic
acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces
artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused
by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis. 相似文献
2.
Gao-Jie Hong Wen-Li Hu Jian-Xu Li Xiao-Ya Chen Ling-Jian Wang 《Plant Molecular Biology Reporter》2009,27(3):334-341
3.
4.
The level of biosynthesis of secreted guanyl-specific ribonucleases (RNases) of Bacillus intermedius (binases) and Bacillus circulans (RNases Bci) by recombinant B. subtilis strains increases under nitrogen starvation. The promoter of the binase gene carries the sequences homologous to the recognition sites of the regulatory protein TnrA, which regulates gene expression under growth limitation by nitrogen. Using the B. subtilis strain defective in protein TnrA, it has been shown that the regulatory protein TnrA is involved in the regulation of expression of the binase gene and the gene of RNase Bci. The TnrA regulation of expression of the RNase Bci gene is indirect, probably by means of the regulatory protein PucR. Thus, it has been established that at least two regulatory mechanisms activate the expression of the genes encoding the secreted RNases of spore-forming bacteria: a system of proteins homologous to the B. subtilis PhoP-PhoR, and regulation by a protein similar to the B. subtilis TnrA regulatory protein. 相似文献
5.
L. R. Fayura D. V. Fedorovych T. M. Prokopiv Yu. R. Boretsky A. A. Sibirny 《Microbiology》2007,76(1):55-59
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5–1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b 2, whereas the hit1 mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains. 相似文献
6.
Previous studies have shown that one of the six leucine codons, UUA, is rare in Streptomyces, and that, while the gene for the UUA-specific tRNA, bldA, can generally be inactivated in diverse streptomycetes without impairing vegetative growth, bldA mutants are typically defective in reproductive aerial growth and in antibiotic production. Here, four complete genome sequences and 143 gene clusters for antibiotic biosynthesis from diverse streptomycetes were analysed in order to evaluate the evolution and function of genes whose possession of TTA codons makes them dependent on bldA. It was deduced that the last common ancestor of the four sequenced genomes, possibly 220 million years ago, already possessed the bldA system, together with perhaps 200 TTA-containing target genes. Some 33 of these genes are retained by the modern descendants, though only three of them retain a TTA in all occurrences. Nearly all of these 33, as well as many of the TTA-containing genes with orthologues in two or three of the four genomes, have the same location on the chromosomes as in their common ancestor. However, the majority of TTA-containing genes (61% overall in the four genomes) are species-specific, and were probably acquired by comparatively recent horizontal gene transfer. Most of these genes are of unknown function, and it is likely that many of them confer specialised ecological benefits. On the other hand, one class of species-specific, functionally recognisable, horizontally acquired genes--the gene clusters for antibiotic production--very often contain TTA codons; and nearly half of them have TTA codons in their pathway-specific regulatory genes. 相似文献
7.
Artemisinin production by hairy roots of Artemisia annua L. was increased 6-fold to 1.8 μg mg−1 dry wt over 6 days by adding 150 mg chitosan l−1. The increase was dose-dependent. Similar treatment of hairy roots with methyl jasmonate (0.2 mM) or yeast extract (2 mg ml−1) increased artemisinin production to 1.5 and 0.9 μg mg−1 dry wt, respectively. 相似文献
8.
Recent studies have identified genes associated with hybrid sterility and other hybrid dysfunctions, but the consequences of introgressions of these speciation genes are often poorly understood. Previously, we identified a panel of genes that are underexpressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to pure species. Here, we build on this reverse-genetics approach to demonstrate that the underexpression of at least five of these genes in hybrids is associated with hybrid sterility and that these five genes are coordinately regulated. We map one upstream regulator of these genes to a region previously shown to harbor one or more factors causing hybrid sterility. Finally, we show that the genes underexpressed in hybrids are often highly conserved, as might be predicted for downstream targets of the genetic changes that cause hybrid sterility. This approach integrates forward genetics with reverse genetics to show a proximate consequence of the introgression of particular hybrid sterility-conferring regions between species: underexpression of genes necessary for normal spermatogenesis.[Reviewing Editor: Martin Kreitman] 相似文献
9.
10.
A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a
and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly
disulfide-bonded β-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for
production of refolded and active T. molitor antifreeze protein in bacteria was obtained. 相似文献
11.
12.
13.
Poly-3-hydroxyalkanoates (PHAs) are synthesized by many bacteria as intracellular storage material. The final step in PHA biosynthesis is catalyzed by two PHA polymerases (phaC) in Pseudomonas putida. The expression of these two phaC genes (phaC1 and phaC2)was studied in Escherichia coli, either under control of the native promoter or under control of an external promoter. It was found that the two phaC genes are not expressed in E. coli without an external promoter. During heterologous expression of phaC from Plac on a high copy number plasmid, a rapid reduction of the number of colony forming units was observed, especially for phaC2. It appears that the plasmid instability was partially caused by high-level production of PHA polymerase. Subsequently, tightly regulated phaC2 expression systems on a low copy number vector were applied in E. coli. This resulted in PHA yields of over 20 of total cell dry weight, which was 2 fold higher than that obtained from the system where phaC2 is present on a high copy number vector. In addition, the PHA monomer composition differed when different gene expression systems or different phaC genes were applied. 相似文献
14.
The ANR1 MADS-box gene in Arabidopsis thaliana (L.) Heynh. has previously been identified as a key regulator of lateral root growth in response to signals from external
nitrate (NO3−). We have used quantitative real-time PCR to investigate the responsiveness of ANR1 and 11 other root-expressed MADS-box genes to fluctuations in the supply of N, P and S. ANR1 expression in roots of hydroponically grown Arabidopsis plants was specifically regulated by changes in the N supply, being induced by N deprivation and rapidly repressed by N re-supply.
This pattern of N responsiveness differs from the NO3− -inducibility of ANR1 previously observed in Arabidopsis root cultures [H.M. Zhang and B.G. Forde (1998) Science 279:407–409]. Seven of the other MADS-box genes responded to N in
a manner similar to ANR1, but less strongly, while four (AGL12, AGL17, AGL18 and AGL79) were unaffected. Six of the N-regulated genes (ANR1, AGL14, AGL16, AGL19, SOC1 and AGL21) belong to just two clades within the type II MADS-box lineage, while the other two (AGL26 and AGL56) belong to the poorly characterized type I lineage. Only SOC1 was additionally found to respond to changes in the P and S supply, suggesting a possible role in a general response to nutrient
stress. Studies with an ANR1 transposon-insertion mutant provided no evidence for regulatory interactions between ANR1 and the other root-expressed MADS-box genes. The implications of the current data for our understanding of the role of ANR1 and other MADS box genes in the nutritional regulation of lateral root growth are discussed. 相似文献
15.
16.
Through the screening of a Streptomyces coelicolor genomic library, carried out in a histidinol phosphate phosphatase (HolPase) deficient strain, SCO5208 was identified as the last unknown gene involved in histidine biosynthesis. SCO5208 is a phosphatase, and it can restore the growth in minimal medium in this HolPase deficient strain when cloned in a high or low copy number vector. Moreover, it shares sequence homology with other HolPases recently identified in Actinobacteria. During this work a second phosphatase, SCO2771, sharing no homologies with SCO5208 and all so far described phosphatases was identified. It can complement HolPase activity mutation only at high copy number. Sequence analysis of SCO5208 and SCO2771, amplified from the HolPase mutant strain, revealed that SCO5208 shows a mutation in a conserved amino acid, whereas SCO2771 does not show any mutation. All these results show that S. coelicolor SCO5208, recently renamed hisN, is the HolPase involved in histidine biosynthesis. 相似文献
17.
FLOWERING LOCUS T (FT) like genes are crucial regulators (both positive and negative) of flowering in angiosperms. We identified two FT homologs in Chenopodium rubrum, a short-day species used as a model plant for the studies of photoperiodic flower induction. We found that CrFTL1 gene was highly inducible by a 12-h dark period, which in turn induced flowering. On the other hand, photoperiodic treatments
that did not induce flowering (short dark periods, or a permissive darkness interrupted by a night break) caused only a slight
increase in CrFTL1 mRNA level. We demonstrated diurnal oscillation of CrFTL1 expression with peaks in the middle of a light period. The oscillation persisted under constant darkness. Unlike FT homologs in rice and Pharbitis, the CrFTL1 expression under constant darkness was very low. The CrFTL2 gene showed constitutive expression. We suggest that the CrFTL1 gene may play a role as a floral regulator, but the function of CrFTL2 remains unknown. 相似文献
18.
Artemisinin-based combination therapy (ACT) forms the frontline treatment of malaria. Artemisinin, an endoperoxide sesquiterpenoid lactone biosynthesized by Artemisia annua, is the effective medicine that kills malarial parasites. Due to insufficient production of artemisinin for ACT, millions of people lost their lives in past years worldwide. To solve this severe problem, numerous studies have been undertaken to understand artemisinin biosynthesis and to innovate metabolic engineering technology to increase artemisinin yield. Here, we focus on reviewing progresses achieved in understanding biosynthetic pathway, genetic breeding, metabolic engineering, and synthetic biology. Furthermore, based on current knowledge, we discuss multiple fundamental questions and challenges. 相似文献
19.
Peñas MM Azparren G Domínguez A Sommer H Ramírez L Pisabarro AG 《Molecular genetics and genomics : MGG》2005,274(4):402-409