首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A decrease in maximal O2 uptake has been demonstrated with increasing altitude. However, direct measurements of individual links in the O2 transport chain at extreme altitude have not been obtained previously. In this study we examined eight healthy males, aged 21-31 yr, at rest and during steady-state exercise at sea level and the following inspired O2 pressures (PIO2): 80, 63, 49, and 43 Torr, during a 40-day simulated ascent of Mt. Everest. The subjects exercised on a cycle ergometer, and heart rate was recorded by an electrocardiograph; ventilation, O2 uptake, and CO2 output were measured by open circuit. Arterial and mixed venous blood samples were collected from indwelling radial or brachial and pulmonary arterial catheters for analysis of blood gases, O2 saturation and content, and lactate. As PIO2 decreased, maximal O2 uptake decreased from 3.98 +/- 0.20 l/min at sea level to 1.17 +/- 0.08 l/min at PIO2 43 Torr. This was associated with profound hypoxemia and hypocapnia; at 60 W of exercise at PIO2 43 Torr, arterial PO2 = 28 +/- 1 Torr and PCO2 = 11 +/- 1 Torr, with a marked reduction in mixed venous PO2 [14.8 +/- 1 (SE) Torr]. Considering the major factors responsible for transfer of O2 from the atmosphere to the tissues, the most important adaptations occurred in ventilation where a fourfold increase in alveolar ventilation was observed. Diffusion from alveolus to end-capillary blood was unchanged with altitude. The mass circulatory transport of O2 to the tissue capillaries was also unaffected by altitude except at PIO2 43 Torr where cardiac output was increased for a given O2 uptake. Diffusion from the capillary to the tissue mitochondria, reflected by mixed venous PO2, was also increased with altitude. With increasing altitude, blood lactate was progressively reduced at maximal exercise, whereas at any absolute and relative submaximal work load, blood lactate was higher. These findings suggest that although glycogenolysis may be accentuated at low work loads, it may not be maximally activated at exhaustion.  相似文献   

2.
Pulmonary gas exchange and acid-base state were compared in nine Danish lowlanders (L) acclimatized to 5,260 m for 9 wk and seven native Bolivian residents (N) of La Paz (altitude 3,600-4,100 m) brought acutely to this altitude. We evaluated normalcy of arterial pH and assessed pulmonary gas exchange and acid-base balance at rest and during peak exercise when breathing room air and 55% O2. Despite 9 wk at 5,260 m and considerable renal bicarbonate excretion (arterial plasma HCO3- concentration = 15.1 meq/l), resting arterial pH in L was 7.48 +/- 0.007 (significantly greater than 7.40). On the other hand, arterial pH in N was only 7.43 +/- 0.004 (despite arterial O2 saturation of 77%) after ascent from 3,600-4,100 to 5,260 m in 2 h. Maximal power output was similar in the two groups breathing air, whereas on 55% O2 only L showed a significant increase. During exercise in air, arterial PCO2 was 8 Torr lower in L than in N (P < 0.001), yet PO2 was the same such that, at maximal O2 uptake, alveolar-arterial PO2 difference was lower in N (5.3 +/- 1.3 Torr) than in L (10.5 +/- 0.8 Torr), P = 0.004. Calculated O2 diffusing capacity was 40% higher in N than in L and, if referenced to maximal hyperoxic work, capacity was 73% greater in N. Buffering of lactic acid was greater in N, with 20% less increase in base deficit per millimole per liter rise in lactate. These data show in L persistent alkalosis even after 9 wk at 5,260 m. In N, the data show 1) insignificant reduction in exercise capacity when breathing air at 5,260 m compared with breathing 55% O2; 2) very little ventilatory response to acute hypoxemia (judged by arterial pH and arterial PCO2 responses to hyperoxia); 3) during exercise, greater pulmonary diffusing capacity than in L, allowing maintenance of arterial PO2 despite lower ventilation; and 4) better buffering of lactic acid. These results support and extend similar observations concerning adaptation in lung function in these and other high-altitude native groups previously performed at much lower altitudes.  相似文献   

3.
Recent measurements at extreme altitude and in low pressure chamber simulations have clarified the human responses to extreme hypoxia. Man can only tolerate the severe oxygen deprivation of great altitudes by an enormous increase in ventilation which has the advantage of defending the alveolar PO2 against the reduced inspired PO2. Nevertheless the arterial PO2 on the Everest summit is less than 30 Torr (1 Torr = 133.3 Pa). An interesting consequence of the hyperventilation is that the respiratory alkalosis greatly increases the oxygen affinity of the hemoglobin and assists in oxygen loading by the pulmonary capillary. The severe hypoxemia impairs the function of many organ systems including the central nervous system, and there is evidence of residual impairment of memory and manipulative skill in climbers returning from great altitudes. At the altitude of Mt. Everest, maximal oxygen uptake is reduced to 20-25% of its sea level value, and it is exquisitely sensitive to barometric pressure. It is likely that the seasonal variation of barometric pressure affects the ability of man to reach the summit without supplementary oxygen.  相似文献   

4.
Oxygen transport to exercising leg in chronic hypoxia   总被引:4,自引:0,他引:4  
Residence at high altitude could be accompanied by adaptations that alter the mechanisms of O2 delivery to exercising muscle. Seven sea level resident males, aged 22 +/- 1 yr, performed moderate to near-maximal steady-state cycle exercise at sea level in normoxia [inspired PO2 (PIO2) 150 Torr] and acute hypobaric hypoxia (barometric pressure, 445 Torr; PIO2, 83 Torr), and after 18 days' residence on Pikes Peak (4,300 m) while breathing ambient air (PIO2, 86 Torr) and air similar to that at sea level (35% O2, PIO2, 144 Torr). In both hypoxia and normoxia, after acclimatization the femoral arterial-iliac venous O2 content difference, hemoglobin concentration, and arterial O2 content, were higher than before acclimatization, but the venous PO2 (PVO2) was unchanged. Thermodilution leg blood flow was lower but calculated arterial O2 delivery and leg VO2 similar in hypoxia after vs. before acclimatization. Mean arterial pressure (MAP) and total peripheral resistance in hypoxia were greater after, than before, acclimatization. We concluded that acclimatization did not increase O2 delivery but rather maintained delivery via increased arterial oxygenation and decreased leg blood flow. The maintenance of PVO2 and the higher MAP after acclimatization suggested matching of O2 delivery to tissue O2 demands, with vasoconstriction possibly contributing to the decreased flow.  相似文献   

5.
Operation Everest II: preservation of cardiac function at extreme altitude   总被引:8,自引:0,他引:8  
Hypoxia at high altitude could depress cardiac function and decrease exercise capacity. If so, impaired cardiac function should occur with the extreme, chronic hypoxemia of the 40-day simulated climb of Mt. Everest (8,840 m, barometric pressure of 240 Torr, inspiratory O2 pressure of 43 Torr). In the five of eight subjects having resting and exercise measurements at the barometric pressures of 760 Torr (sea level), 347 Torr (6,100 m), 282 Torr (7,620 m), and 240 Torr, heart rate for a given O2 uptake was higher with more severe hypoxia. Slight (6 beats/min) slowing of the heart rate occurred only during exercise at the lowest barometric pressure when arterial blood O2 saturations were less than 50%. O2 breathing reversed hypoxemia but never increased heart rate, suggesting that hypoxic depression of rate, if present, was slight. For a given O2 uptake, cardiac output was maintained. The decrease in stroke volume appeared to reflect decreased ventricular filling (i.e., decreased right atrial and wedge pressures). O2 breathing did not increase stroke volume for a given filling pressure. We concluded that extreme, chronic hypoxemia caused little or no impairment of cardiac rate and pump functions.  相似文献   

6.
High altitude increases pulmonary arterial pressure (PAP), but no measurements have been made in humans above 4,500 m. Eight male athletic volunteers were decompressed in a hypobaric chamber for 40 days to a barometric pressure (PB) of 240 Torr, equivalent to the summit of Mt. Everest. Serial hemodynamic measurements were made at PB 760 (sea level), 347 (6,100 m), and 282/240 Torr (7,620/8,840 m). Resting PAP and pulmonary vascular resistance (PVR) increased from sea level to maximal values at PB 282 Torr from 15 +/- 0.9 to 34 +/- 3.0 mmHg and from 1.2 +/- 0.1 to 4.3 +/- 0.3 mmHg.l-1 X min, respectively. During near maximal exercise PAP increased from 33 +/- 1 mmHg at sea level to 54 +/- 2 mmHg at PB 282 Torr. Right atrial and wedge pressures were not increased with altitude. Acute 100% O2 breathing lowered cardiac output and PAP but not PVR. Systemic arterial pressure and resistance did not rise with altitude but did increase with O2 breathing, indicating systemic control differed from the lung circulation. We concluded that severe chronic hypoxia caused elevated pulmonary resistance not accompanied by right heart failure nor immediately reversed by O2 breathing.  相似文献   

7.
As part of the American Medical Research Expedition to Everest in 1981, we measured hemoglobin concentration, red cell 2,3-diphosphoglycerate (2,3-DPG), Po2 at which hemoglobin is 50% saturated (P50), and acid-base status in expedition members at various altitudes. All measurements were made in expedition laboratories and, with the exception of samples from the South Col of Mt. Everest (8,050 m), within 2 h of blood collection. In vivo conditions were estimated from direct measurements of arterial blood gases and pH or inferred from base excess and alveolar PCO2. As expected, increased 2,3-DPG was associated with slightly increased P50, when expressed at pH 7.4. Because of respiratory alkalosis, however, the subjects' in vivo P50 at 6,300 m (27.6 Torr) was slightly less than at sea level (28.1 Torr). The estimated in vivo P50 was progressively lower at 8,050 m (24.9 Torr) and on the summit at 8,848 m (19.4 Torr in one subject). Our data suggest that, at extreme altitude, the blood O2 equilibrium curve shifts progressively leftward because of respiratory alkalosis. This left shift protects arterial O2 saturation at extreme altitude.  相似文献   

8.
Nocturnal periodic breathing at altitudes of 6,300 and 8,050 m   总被引:2,自引:0,他引:2  
Nocturnal periodic breathing was studied in eight well-acclimatized subjects living at an altitude of 6,300 m [barometric pressure (PB) 350-352 Torr] for 3-5 wk and in four subjects during one night at 8,050 m altitude (PB 281-285 Torr). The measurements at 6,300 m included tidal volume by inductance plethysmography, arterial O2 saturation by ear oximetry (calibrated by arterial blood samples), electrocardiogram (ECG), and electrooculogram. At 8,050 m, periodic breathing was inferred from the cyclical variation in heart rate obtained from a night-long ECG record. All subjects at 6,300 m altitude showed well-marked periodic breathing with apneic periods. Cycle length averaged 20.5 s with 7.9 s apnea. Minimal arterial O2 saturation averaged 63.4% corresponding to a PO2 of approximately 33 Torr, i.e., approximately 6 Torr lower than the normal value at rest during daytime. This was probably the most severe hypoxemia of the 24-h period. At 8,050 m altitude, the cycle length averaged 15.4 s, much longer than predicted by a theoretical model. Cyclical variations in heart rate caused by periodic breathing occurred in all subjects, but abnormal cardiac rhythms such as ventricular premature contractions were uncommon. The severe arterial hypoxemia caused by periodic breathing may be an important determinant of tolerance to these great altitudes.  相似文献   

9.
In a previous study of normal subjects exercising at sea level and simulated altitude, ventilation-perfusion (VA/Q) inequality and alveolar-end-capillary O2 diffusion limitation (DIFF) were found to increase on exercise at altitude, but at sea level the changes did not reach statistical significance. This paper reports additional measurements of VA/Q inequality and DIFF (at sea level and altitude) and also of pulmonary arterial pressure. This was to examine the hypothesis that VA/Q inequality is related to increased pulmonary arterial pressure. In a hypobaric chamber, eight normal subjects were exposed to barometric pressures of 752, 523, and 429 Torr (sea level, 10,000 ft, and 15,000 ft) in random order. At each altitude, inert and respiratory gas exchange and hemodynamic variables were studied at rest and during several levels of steady-state bicycle exercise. Multiple inert gas data from the previous and current studies were combined (after demonstrating no statistical difference between them) and showed increasing VA/Q inequality with sea level exercise (P = 0.02). Breathing 100% O2 did not reverse this increase. When O2 consumption exceeded about 2.7 1/min, evidence for DIFF at sea level was present (P = 0.01). VA/Q inequality and DIFF increased with exercise at altitude as found previously and was reversed by 100% O2 breathing. Indexes of VA/Q dispersion correlated well with mean pulmonary arterial pressure and also with minute ventilation. This study confirms the development of both VA/Q mismatch and DIFF in normal subjects during heavy exercise at sea level. However, the mechanism of increased VA/Q mismatch on exercise remains unclear due to the correlation with both ventilatory and circulatory variables and will require further study.  相似文献   

10.
The O2 sensor that triggers hypoxic pulmonary vasoconstriction may be sensitive not only to alveolar hypoxia but also to hypoxia in mixed venous blood. A specific test of the blood contribution would be to lower mixed venous PO2 (PvO2), which can be accomplished by increasing hemoglobin-O2 affinity. When we exchanged transfused rats with cyanate-treated erythrocytes [PO2 at 50% hemoglobin saturation (P50) = 21 Torr] or with Créteil erythrocytes (P50 = 13.1 Torr), we lowered PvO2 from 39 +/- 5 to 25 +/- 4 and to 14 +/- 4 Torr, respectively, without altering arterial blood gases or hemoglobin concentration. Right ventricular systolic pressure increased from 32 +/- 2 to 36 +/- 3 Torr with cyanate erythrocytes and to 44 +/- 5 Torr with Créteil erythrocytes. Cardiac output was unchanged. Control exchange transfusions with normal rat or 2,3-diphosphoglycerate-enriched human erythrocytes had no effect on PvO2 or right ventricular pressure. Alveolar hypoxia plus high O2 affinity blood caused a greater increase in right ventricular systolic pressure than either stimulus alone. We concluded that PvO2 is an important determinant of pulmonary vascular tone in the rat.  相似文献   

11.
In five anesthetized patients with a Jarvik-7 artificial heart, pulmonary volume displacements generated by cardiogenic oscillations were measured using an indirect spirometric method. Consequences on gas exchange were also evaluated during a 15-min period of apnea by use of a tracheal insufflation of pure O2 at a constant flow rate of 20 l/min. The Jarvik-7 artificial heart generated a mean pulmonary volume displacement of 105 +/- 29 (SD) ml/heart beat. After 15 min of apnea, arterial PCO2 (PaCO2) significantly increased from 29 +/- 5 to 47 +/- 6 (SD) Torr. PaCO2 increased by 0.8 Torr/min from the 5th to the 15th min of apnea. Mean arterial PO2, mean pulmonary shunt, mean O2 consumption, and mean metabolic production of CO2 did not change significantly during the apnea period. Because cardiac output was kept constant during the study, O2 transport was adequately maintained throughout the apnea period. In patient 1, where the period of apnea was continued for 60 min, PaCO2 progressively increased until the 45th min and then remained stable at 61 Torr during the last 15 min of apnea. This "plateau" corresponded to an alveolar ventilation of 3,907 ml/min, representing 69% of the alveolar ventilation calculated during conventional mechanical ventilation. In conclusion, the Jarvik-7 artificial heart provides a potent respiratory support through the cardiogenic oscillations it generates.  相似文献   

12.
The relative roles of ventilation-perfusion (VA/Q) inequality, alveolar-capillary diffusion resistance, postpulmonary shunt, and gas phase diffusion limitation in determining arterial PO2 (PaO2) were assessed in nine normal unacclimatized men at rest and during bicycle exercise at sea level and three simulated altitudes (5,000, 10,000, and 15,000 ft; barometric pressures = 632, 523, and 429 Torr). We measured mixed expired and arterial inert and respiratory gases, minute ventilation, and cardiac output. Using the multiple inert gas elimination technique, PaO2 and the arterial O2 concentration expected from VA/Q inequality alone were compared with actual values, lower measured PaO2 indicating alveolar-capillary diffusion disequilibrium for O2. At sea level, alveolar-arterial PO2 differences were approximately 10 Torr at rest, increasing to approximately 20 Torr at a metabolic consumption of O2 (VO2) of 3 l/min. There was no evidence for diffusion disequilibrium, similar results being obtained at 5,000 ft. At 10 and 15,000 ft, resting alveolar-arterial PO2 difference was less than at sea level with no diffusion disequilibrium. During exercise, alveolar-arterial PO2 difference increased considerably more than expected from VA/Q mismatch alone. For example, at VO2 of 2.5 l/min at 10,000 ft, total alveolar-arterial PO2 difference was 30 Torr and that due to VA/Q mismatch alone was 15 Torr. At 15,000 ft and VO2 of 1.5 l/min, these values were 25 and 10 Torr, respectively. Expected and actual PaO2 agreed during 100% O2 breathing at 15,000 ft, excluding postpulmonary shunt as a cause of the larger alveolar-arterial O2 difference than accountable by inert gas exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
High hemoglobin affinity for O2 [low PO2 at 50% saturation of hemoglobin (P50)] could degrade exercise performance in normoxia by lowering mean tissue PO2 but could enhance O2 transport in hypoxic exercise by increasing arterial O2 saturation. We measured O2 transport at rest and at graded levels of steady-state exercise in tracheostomized dogs with normal P50 (28.8 +/- 1.8 Torr) and again after P50 was lowered (19.5 +/- 0.7 Torr) by sodium cyanate infusions. Measurements were made during ventilation with room air (RA), 12% O2 in N2, or 10% O2 in N2. Cardiac output (QT) as a function of O2 consumption (VO2) was not altered by low P50 at any inspired O2 fraction (P greater than 0.05). With RA exercise, arterial content (CaO2) and O2 delivery (QT X CaO2) were unchanged at low P50, whereas mixed venous PO2 was reduced at each level of VO2. With exercise in hypoxia, CaO2 and O2 delivery were significantly improved at low P50 (P less than 0.05). Mixed venous PO2 was lower than control during 12% O2 (P less than 0.05) but not different from control during 10% O2 exercise at low P50. Despite a presumed decrease in tissue PO2 during RA and 12% O2 exercise, exercise performance and base excess decline were not significantly worse than control levels. We conclude that, in canine steady-state exercise, hemoglobin P50 is not an important determinant of tissue O2-extraction capacity during normoxia or moderate hypoxia. In extreme hypoxia, low P50 may help to maintain tissue PO2 by enhancing systemic O2 delivery at each level of QT.  相似文献   

14.
We studied ventilatory responsiveness to hypoxia and hypercapnia in anesthetized cats before and after exposure to 5 atmospheres absolute O2 for 90-135 min. The acute hyperbaric oxygenation (HBO) was terminated at the onset of slow labored breathing. Tracheal airflow, inspiratory (TI) and expiratory (TE) times, inspiratory tidal volume (VT), end-tidal PO2 and PCO2, and arterial blood pressure were recorded simultaneously before and after HBO. Steady-state ventilation (VI at three arterial PO2 (PaO2) levels of approximately 99, 67, and 47 Torr at a maintained arterial PCO2 (PaCO2, 28 Torr) was measured for the hypoxic response. Ventilation at three steady-state PaCO2 levels of approximately 27, 36, and 46 Torr during hyperoxia (PaO2 450 Torr) gave a hypercapnic response. Both chemical stimuli significantly stimulated VT, breathing frequency, and VI before and after HBO. VT, TI, and TE at a given stimulus were significantly greater after HBO without a significant change in VT/TI. The breathing pattern, however, was abnormal after HBO, often showing inspiratory apneusis. Bilateral vagotomy diminished apneusis and further prolonged TI and TE and increased VT. Thus a part of the respiratory effects of HBO is due to pulmonary mechanoreflex changes.  相似文献   

15.
Oxygen transport during steady-state submaximal exercise in chronic hypoxia   总被引:3,自引:0,他引:3  
Arterial O2 delivery during short-term submaximal exercise falls on arrival at high altitude but thereafter remains constant. As arterial O2 content increases with acclimatization, blood flow falls. We evaluated several factors that could influence O2 delivery during more prolonged submaximal exercise after acclimatization at 4,300 m. Seven men (23 +/- 2 yr) performed 45 min of steady-state submaximal exercise at sea level (barometric pressure 751 Torr), on acute ascent to 4,300 m (barometric pressure 463 Torr), and after 21 days of residence at altitude. The O2 uptake (VO2) was constant during exercise, 51 +/- 1% of maximal VO2 at sea level, and 65 +/- 2% VO2 at 4,300 m. After acclimatization, exercise cardiac output decreased 25 +/- 3% compared with arrival and leg blood flow decreased 18 +/- 3% (P less than 0.05), with no change in the percentage of cardiac output to the leg. Hemoglobin concentration and arterial O2 saturation increased, but total body and leg O2 delivery remained unchanged. After acclimatization, a reduction in plasma volume was offset by an increase in erythrocyte volume, and total blood volume did not change. Mean systemic arterial pressure, systemic vascular resistance, and leg vascular resistance were all greater after acclimatization (P less than 0.05). Mean plasma norepinephrine levels also increased during exercise in a parallel fashion with increased vascular resistance. Thus we conclude that both total body and leg O2 delivery decrease after arrival at 4,300 m and remain unchanged with acclimatization as a result of a parallel fall in both cardiac output and leg blood flow and an increase in arterial O2 content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Pulmonary gas exchange was studied in eight normal subjects both before and after 2 wk of altitude acclimatization at 3,800 m (12,470 ft, barometric pressure = 484 Torr). Respiratory and multiple inert gas tensions, ventilation, cardiac output (Q), and hemoglobin concentration were measured at rest and during three levels of constant-load cycle exercise during both normoxia [inspired PO2 (PIO2) = 148 Torr] and normobaric hypoxia (PIO2 = 91 Torr). After acclimatization, the measured alveolar-arterial PO2 difference (A-aPO2) for any given work rate decreased (P less than 0.02). The largest reductions were observed during the highest work rates and were 24.8 +/- 1.4 to 19.7 +/- 0.8 Torr (normoxia) and 22.0 +/- 1.1 to 19.4 +/- 0.7 Torr (hypoxia). This could not be explained by changes in ventilation-perfusion inequality or estimated O2 diffusing capacity, which were unaffected by acclimatization. However, Q for any given work rate was significantly decreased (P less than 0.001) after acclimatization. We suggest that the reduction in A-aPO2 after acclimatization is a result of more nearly complete alveolar/end-capillary diffusion equilibration on the basis of a longer pulmonary capillary transit time.  相似文献   

18.
Exercise exacerbates acute mountain sickness at simulated high altitude.   总被引:2,自引:0,他引:2  
We hypothesized that exercise would cause greater severity and incidence of acute mountain sickness (AMS) in the early hours of exposure to altitude. After passive ascent to simulated high altitude in a decompression chamber [barometric pressure = 429 Torr, approximately 4,800 m (J. B. West, J. Appl. Physiol. 81: 1850-1854, 1996)], seven men exercised (Ex) at 50% of their altitude-specific maximal workload four times for 30 min in the first 6 h of a 10-h exposure. On another day they completed the same protocol but were sedentary (Sed). Measurements included an AMS symptom score, resting minute ventilation (VE), pulmonary function, arterial oxygen saturation (Sa(O(2))), fluid input, and urine volume. Symptoms of AMS were worse in Ex than Sed, with peak AMS scores of 4.4 +/- 1.0 and 1.3 +/- 0.4 in Ex and Sed, respectively (P < 0.01); but resting VE and Sa(O(2)) were not different between trials. However, Sa(O(2)) during the exercise bouts in Ex was at 76.3 +/- 1.7%, lower than during either Sed or at rest in Ex (81.4 +/- 1.8 and 82.2 +/- 2.6%, respectively, P < 0.01). Fluid intake-urine volume shifted to slightly positive values in Ex at 3-6 h (P = 0.06). The mechanism(s) responsible for the rise in severity and incidence of AMS in Ex may be sought in the observed exercise-induced exaggeration of arterial hypoxemia, in the minor fluid shift, or in a combination of these factors.  相似文献   

19.
An ischemic canine limb model was used to determine whether endotoxin reduces the ability of resting skeletal muscle to extract O2 and whether increasing the arterial PO2 would increase its O2 extraction. Isolated limbs were pump perfused via an extracorporeal circuit with membrane oxygenator at three progressively lower flows and PO2 of both 60 and 200 Torr, whereas the rest of the body remained normoxic and normotensive. Six anesthetized, paralyzed dogs were injected with endotoxin (4 mg/kg, ENDO), and another six were controls (CONT). Limb critical O2 delivery was higher (P less than 0.05) in ENDO than CONT (8.3 vs. 6.1 ml.kg-1.min-1). Critical venous PO2 was also higher (P less than 0.05) in ENDO than CONT (38 vs. 30 Torr). Critical O2 extraction ratio was lower (P less than 0.05) in ENDO than CONT (0.60 vs. 0.73). There were no differences in these variables between low and high arterial PO2. We concluded that 1) endotoxin can cause a small but significant O2 extraction defect in skeletal muscle, 2) increasing arterial PO2 did not correct such a defect, nor did it improve O2 uptake in ischemic, but otherwise healthy, muscle, and 3) skeletal muscle may contribute to the peripheral O2 extraction defect in adult respiratory distress syndrome insofar as endotoxin effects model those found in adult respiratory distress syndrome.  相似文献   

20.
It is unclear whether dogs develop pulmonary hypertension (PH) at high altitude. Beagles from sea level were exposed to an altitude of 3,100 m (PB 525 Torr) for 12-19 mo and compared with age-matched controls remaining at low altitude of 130 m (PB 750 Torr). In beagles taken to high altitude as adults, pulmonary arterial pressures (PAP) at 3,100 m were 21.6 +/- 2.6 vs. 13.2 +/- 1.2 Torr in controls. Likewise, in beagles taken to 3,100 m as puppies 2.5 mo old, PAP was 23.2 +/- 2.1 vs. 13.8 +/- 0.4 Torr in controls. This PH reflected a doubling of pulmonary vascular resistance and showed no progression with time at altitude. Pulmonary vascular reactivity to acute hypoxia was also enhanced at 3,100 m. Inhibition of prostaglandin synthesis did not attenuate the PH or the enhanced reactivity. Once established, the PH was only partially reversed by acute relief of chronic hypoxia, but reversal was virtually complete after return to low altitude. Hence, beagles do develop PH at 3,100 m of a severity comparable to that observed in humans at the same or even higher altitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号