首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceramic industry wastewaters not only contain high suspended and total solids but also significant amounts of dissolved organics resulting in high BOD or COD loads. Suspended solids can be removed from the wastewater by chemical precipitation. However, dissolved BOD/COD compounds can only be removed by biological or chemical oxidation. Effluent wastewater from chemical sedimentation stage of EGE CERAMIC industry was characterized and subjected to biological treatment in a laboratory scale activated sludge unit. Experiments were conducted at different hydraulic and solids retention times. The best results were obtained with Šc=20 h of hydraulic and Šc=20 days of solids retention times (sludge age) resulting in effluent COD concentration of 40 mg/l from a feed wastewater of 720 mg/l COD content. The suspended solids content of the activated sludge effluent was approximately 52 mg/l.  相似文献   

2.
The aim of this work was to study the influence of influent chemical oxygen demand (COD), upflow velocity of wastewater, and cationic polymer additives in inoculum, on biomass granulation and COD removal efficiency in upflow anaerobic sludge blanket (UASB) reactor for treating low strength wastewater. Statistical models were formulated based on these three variables to optimize the biomass granulation and COD removal efficiency in UASB reactors using a two-level, full factorial design. For the thick inoculum used in this study, having suspended solids (SS) >80 g/l and volatile suspended solids (VSS) to SS ratio <0.3, cationic polymer additives in the inoculum showed adverse effect on biomass granulation and COD removal efficiency. It is concluded that for such thick inoculum, granulation can be obtained while treating low strength wastewaters in UASB reactor by selecting proper combination of influent COD and liquid upflow velocity so as to represent the organic loading rate (OLR) greater than 1.0 kg COD/m(3) d. Validation of model predictions for treatment of synthetic wastewater and actual sewage reveals the efficacy of these models for enhancing granulation and COD removal efficiency.  相似文献   

3.
Dairy wastewaters containing elevated fat and grease levels (868 mg l–1) were treated in an upflow anaerobic sludge blanket reactor (UASB) and resulted in effluents of high turbidity (757 nephelometric turbidity units), volatile suspended solids up to 944 mg l–1 and COD removal below 50%. When the same dairy wastewater was pre-treated with 0.1% (w/v) of fermented babassu cake containing Penicillium restrictum lipases, turbidity and volatile suspended solids were decreased by 75% and 90%, respectively, and COD removal was as high as 90%.  相似文献   

4.
In this paper, we pointed out the problems of using conventional volatile suspended solids (VSS) and chemical oxygen demand (COD) to evaluate biokinetic coefficients, especially for the treatment of highly suspended organic wastewater. We also introduced a novel approach to evaluate biokinetic coefficients by measurement of adenosine 5'-triphosphate (ATP) of microorganisms. The concept of using ATP analysis in biokinetic evaluations with highly suspended wastewater was shown to be effective. This study also showed that the conventional VSS and COD methods were strongly affected by incoming suspended organics in the wastewater and by biokinetics of microorganisms. A cheese-processing wastewater was used in evaluating the biokinetics of mesophilic acidogens. The concentration of COD and total suspended solids in the wastewater was 63.3 g/L and 12.4 g/L, respectively. The TSS was 23.6% of total solids concentration. A high ratio of VSS to total suspended solids of 96.7% indicated that most of the suspended particles were organic materials. Lactose and protein were the major organic components contributing COD in the wastewater, and a total of 94.2% of the COD in the wastewater was due to the presence of lactose and protein. Two different physiological conditions where the maximum rates of acetate and butyrate production occurred were tested. These were pH 7 (condition A for acetate production) and pH 7.3 (condition B for butyrate production) at 36.2C, respectively. Based on the molecular structures of the major organic substances and microbial ATP analysis, the residual substrate and microbial concentrations were stoichiometrically converted to substrate COD (SuCOD) and microbial VSS (MVSS), respectively, using correlation coefficients reported previously. These SuCOD and MVSS were simultaneously used to evaluate the biokinetic coefficients using Monod-based mathematical equations. The nonlinear least squares method with 95% confidence interval was used to evaluate biokinetic coefficients. The maximum microbial growth rate, mu(max) and half saturation coefficient, K(s), for conditions A and B were determined to be 9.9 +/- 0.3 and 9.3 +/- 1.0 day(-1) and 134.0 +/- 58.3 and 482.5 +/- 156.5 mg SuCOD/L, respectively. The microbial yield coefficient, Y, and microbial decay rate coefficient, k(d) for conditions A and B were determined to be 0.29 +/- 0.03 and 0.20 +/- 0.05 mg MVSS/mg SuCOD, and 0.14 +/- 0.05 and 0.25 +/- 0.05 day(-1), respectively. Specific substrate utilization rate at condition B was 43.8 +/- 20.6 mg SuCOD/mg MVSS/day, which was 31% higher than that at condition A.  相似文献   

5.
The biodegradability of Pinus radiata bleached kraft mill wastewater by an activated sludge treatment during a period of 280 days was evaluated. The effect of varying hydraulic retention time (HRT) in the range of 48 to 4.5 h and nitrogen (N) and phosphorus (P) addition on removal of biological oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (TSS and VSS), total phenolic compounds, tannin and lignin and reduction of toxicity was investigated. Removal of BOD5 was higher than 90% when HRT varied from 16 to 6 h, but decreased when HRT was less than 6 h. Similar performance was observed for COD removal, which was about 60% when HRT was varied from 16 to 6 h. Removal of total phenolic compounds and tannin and lignin was seriously affected by HRT. N and P addition to maintaining a ratio of 100:5:0.3 provided optimal BOD5, COD and suspended solids removal when HRT varied from 16 to 7 h, and no toxicity (using Daphnia) was detected in the treated effluent. When HRT was less than 6 h, the system showed destabilisation and pH, COD, BOD5 and suspended solids removal decreased.  相似文献   

6.
Rhizopus microsporus was grown in an attached growth system using corn wet-milling effluent as a growth medium. This strain was chosen due to its ability to effectively degrade organic matter in corn wet-milling effluent and for its properties to produce significant levels of protein, chitin and chitosan. Fungal growth and organic removal efficiency were examined under both aseptic and non-aseptic conditions with and without nutrient supplementation. Plastic composite support (PCS) tubes, composed of 50% (w/w) polypropylene (PP) and 50% (w/w) agricultural products were used as support media. Significantly higher organic removal measured as chemical oxygen demand (COD) and biomass yield were observed in the bioreactor with PCS tubes than in two control bioreactors; that is with PP tubes alone and suspended growth (without support media). This confirmed that the PCS support medium with agricultural components enhanced fungal growth and organic removal. The results showed that supplementation of nutrients (e.g., mineral salts) under aseptic conditions enhanced the COD removal from 50% to 55% and observed biomass yield from 0.11 to 0.16 g (dry-weight)/g COD(removed) (i.e., from 0.10 to 0.14 g volatile solids (VS)/g COD(removed) approximately). Non-aseptic operation without nutrient supplementation resulted in an observed biomass yield of 0.32 g volatile suspended solids (VSS)/g COD(removed) with no significant improvement in COD removal ( approximately 53%); whereas with nutrient supplementation, the observed biomass yield increased to 0.56 g VSS/g COD(removed) and COD removal improved to 85%. The fungal system was able to degrade the organic matter with concomitant production of high-value fungal biomass. This is the first study that examined the conversion of corn milling waste stream into high value fungal protein.  相似文献   

7.
The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR.  相似文献   

8.
A new hybrid reactor, the upflow blanket filter (UBF), which combined on open volume in the bottom two-thirds of the reactor for a sludge blanket and submerged plastic rings (Flexiring, Koch Inc., 235 m(2)/m(3)) in the upper one-third of the reactor volume, was studied. This UBF reactor was operated at 27 degrees C at loading rates varying from 5 to 51 g chemical oxygen demand (COD)/L d with soluble sugar wastewater (2500 mg COD/L). Maximum removal rates of 34 g COD/L d and CH(4) production rates of 7 vol/vol d [standard temperature and pressure (STP)] were obtained. The biomass activity was about 1.2 g COD/g volatile suspended solids per day. Conversion (based on effluent soluble COD) was over 93% with loading rates up to 26 g COD/L d. At higher loading rates conversion decreased rapidly. The packing was very efficient in retaining biomass.  相似文献   

9.
The importance of having a rapid method for determining the viable biomass in activated-sludge wastewater treatment plants (WWTP) for process control and development is well recognized. The firefly bioluminescence ATP assay has been proposed for this purpose. Such an assay using partially purified firefly luciferase and synthetic firefly luciferin for the bioluminescence reaction, a liquid scintillation counter in the out-of-coincidence mode as luminescence detector, and a sludge ATP extraction technique involving dimethyl sulfoxide at room temperature is described. Experiments with several pure bacteria cultures were done to demonstrate the feasibility of applying this assay to activated sludge to activated sludge WWTP investigation and control. The ATP content of samples taken from various points in a 350000 gal/day brewery activated-sludge WWTP was monitored for 4.5 months. Good linear correlation between ATP and mixed-liquor suspended solids, return sludge suspended solids, and effluent suspended solids were observed. Percentage viabilities of the various sludge samples were derived from the ATP results.  相似文献   

10.
Studies are carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater are found to be very high with low Biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and start up of the reactor is carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor is studied at different organic loading rates (OLR) and it is found that the optimum OLR is 10 kg COD/m3/day. The wastewater under investigation, which is having considerable quantity of SS, is treated anaerobically without any pretreatment. The COD and BOD of the reactor outlet wastewater are monitored and reduction at steady state and optimum OLR is observed to be 60-70% of COD and 80-90% of BOD. The reactor is subjected to organic shock loads at two different OLR and it is observed that the reactor could withstand shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.  相似文献   

11.
A combined thermophilic-mesophilic wastewater treatment was studied using a laboratory-scale thermophilic activated sludge process (ASP) followed by mesophilic ASP or a thermophilic suspended carrier biofilm process (SCBP) followed by mesophilic ASP, both systems treating diluted molasses (dilution factor 1:500 corresponding GF/A-filtered COD (COD(filt)) of 1900+/-190 mgl(-1)). With hydraulic retention times (HRTs) of 12-18 h the thermophilic ASP and thermophilic SCBP removed 60+/-13% and 62+/-7% of COD(filt), respectively, with HRT of 8 h the removals were 48+/-1% and 69+/-4%. The sludge volume index (SVI) was notably lower in the thermophilic SCBP (measured from suspended sludge) than in the thermophilic ASP. Under the lowest HRT the mesophilic ASP gave better performance (as SVI, COD(filt), and COD(tot) removals) after the thermophilic SCBP than after the thermophilic ASP. Measured sludge yields were low (less than 0.1 kg suspended solids (SS) kg COD(filt removed)(-1)) in all processes. Both thermophilic treatments removed 80-85% of soluble COD (COD(sol)) whereas suspended COD (COD(susp)) and colloidal COD (COD(col)) were increased. Both mesophilic post-treatments removed all COD(col) and most of the COD(susp) from the thermophilic effluents. In conclusion, combined thermophilic-mesophilic treatment appeared to be easily operable and produced high effluent quality.  相似文献   

12.
Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.  相似文献   

13.
Shin C  Lee E  McCarty PL  Bae J 《Bioresource technology》2011,102(21):9860-9865
The effect of influent DO/COD (dissolved oxygen/chemical oxygen demand) ratio on the performance of an anaerobic fluidized bed reactor (AFBR) containing GAC was studied. A high influent DO concentration was found to have adverse impacts on organic removal efficiency, methane production, and effluent suspended solids (SS) concentration. These problems resulted with a DO/COD ratio of 0.12, but not at a lower ratio of 0.05. At first organic removal appeared satisfactory at the higher DO/COD ratio at a hydraulic retention time of 0.30 h, but soon a rapid growth of oxygen-consuming zoogloeal-like organisms resulted, eventually causing high effluent SS concentrations. The influent DO also had an inhibitory effect, resulting in a long recovery time for adequate methanogenic activity to return after influent DO removal began. With the growing interest in anaerobic treatment of low COD wastewaters, the increased possibility of similar adverse DO effects occurring needs consideration.  相似文献   

14.
AIMS: The aim of this study was to compare the efficiency of peracetic acid with that of chlorine dioxide in the disinfection of wastewater from a sewage treatment plant (serving about 650 000 inhabitants) that has been using peracetic acid as a disinfectant since 1998. METHODS AND RESULTS: A total of 23 samplings were made, each consisting of three samples: from secondary effluent, effluent disinfected with 2 mg l(-1) of peracetic acid and effluent disinfected with 2.2 mg l(-1) of chlorine dioxide (contact time 20 min). For each sample, measurements were made of the heterotrophic plate count at 36 degrees C, total and faecal coliforms, Escherichia coli, enterococci, pH, suspended solids and chemical oxygen demand (COD). During the first phase of the experiment the peracetic acid was seen to be less efficient than chlorine dioxide. To improve the disinfectant action a system of mechanical agitation was added which led to a greater efficiency in the inactivation of bacteria of faecal origin. CONCLUSIONS: Both products were found to be influenced by the level of microbial contamination, the amount of suspended solids and COD but not by the pH of the effluent before disinfection. The immediate mixing of the wastewater and disinfectant caused a greater reduction in enterococci. SIGNIFICANCE AND IMPACT OF THE STUDY: Since peracetic acid was seen to produce a high abatement of micro-organisms, it can be considered as a valid alternative to chlorine dioxide in the disinfection of wastewaters.  相似文献   

15.
《Process Biochemistry》2014,49(12):2220-2227
The UASB process for wastewater treatment has been extensively studied, but the use of zeolite to improve UASB reactor performance has rarely been explored. In this study, a UASB reactor modified with natural zeolite operating at high nitrogen concentrations (0.5, 0.7 and 1 g/L) was evaluated. Two laboratory bioreactors, one with zeolite and one without, were operated at ambient temperatures ranging between 18 °C and 21 °C. The experimental phase had a start-up period of 21 days. In the reactor with zeolite, the pH was found to be between 7.9 and 9.1, with a COD removal efficiency of about 60% after 80 days of operation at ammonia concentrations of between 0.229 and 0.429 g/L in the effluent. In the reactor without zeolite, the pH was between 8.3 and 9.3, and the COD removal efficiency was about 40% at ammonia concentrations between 0.244 and 0.535 g/L in the effluent. The addition of zeolite also decreased the volatile suspended solids (VSS) concentration in the effluent, generating a biomass with larger granules and higher settling rates as compared to a UASB reactor without zeolite. Taking the lower ammonia concentration, the higher COD removal and the improved granulation into account, it can be concluded that natural zeolite positively influenced the behavior and performance of the UASB reactor operating with high nitrogen concentrations.  相似文献   

16.
An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.  相似文献   

17.
The efficiency of a biosorbent prepared from Eichhornia crassipes roots (ECR) was explored for the treatment of domestic sewage water in combination with low-cost ceramic microfiltration membrane. Batch sorption studies were conducted as a function of biosorbent dose, initial chemical oxygen demand (COD) loading, and temperature. Sorption equilibrium data of varying initial COD values (116–800 mg/L) indicated high potential of ECR for COD removal. Using 0.25 g/L of biosorbent dose, the equilibrium adsorption capacity was obtained as 2480 mg/g at 20°C for an initial COD loading of 800 mg/L. Microfiltration study was performed using ceramic membrane made from composition of α-alumina and clay. The effect of operating parameters on filtration characteristics was observed in terms of permeate flux. Permeate samples were characterized in terms of various parameters both for the direct filtration, as well as biosorbent-assisted filtration. The filtration behavior of wastewater at varying transmembrane pressure was explained using various membrane fouling models. The results suggested that microfiltration of domestic wastewater with incorporation of biosorbent (0.25 g/L) was highly effective for removal of organic load (>90%), turbidity (>99%), and total suspended solids (TSS) (93–95%) and the treated water quality was suitable for reuse in various purposes, such as gardening, floor and car washing, etc.  相似文献   

18.
The present study investigates the biodegradation of pharmaceutically active compounds (PhACs) by active biomass in activated sludge. Active heterotrophs (Xbh) which are known to govern COD removal are suggested as a determining factor for biological PhAC removal as well. Biodegradation kinetics of five polar PhACs were determined in activated sludge of two wastewater treatment plants which differed in size, layout and sludge retention time (SRT).Results showed that active fractions of the total suspended solids (TSS) differed significantly between the two sludges, indicating that TSS does not reveal information about heterotrophic activity. Furthermore, PhAC removal was significantly faster in the presence of high numbers of heterotrophs and a low SRT. Pseudo first-order kinetics were modified to include Xbh and used to describe decreasing PhAC elimination with increasing SRT.  相似文献   

19.
The electrochemical oxidation of the digested effluent from anaerobic digestion of dairy manure was investigated in this study. The digested effluent sample containing with suspended solids was pretreated by filtration for the electrochemical experiment. The influence of direct anodic oxidation and indirect oxidation was evaluated through the use of dimensionally stable anode (DSA) and Ti/PbO2 as anode. The decreasing rate of chemical oxygen demand (COD) was higher at lead dioxide coated titanium (Ti/PbO2) electrode than at DSA, however the DSA was preferred anode for the decrease of ammonium nitrogen (NH4-N) due to the control of ammonium nitrate (NO3-N) accumulation. The results showed that the filtration of suspended solids as a pretreatment and addition of NaCl could improve the whole removing efficiency of NH4-N in the digested effluent on electrochemical oxidation.  相似文献   

20.
The upflow aerated biofilter with polyurethane foam cubes as the supporting medium was used for the investigation of nitrification studies on municipal sewage (secondary treated as well as untreated domestic sewage). In case of secondary treated sewage effluent, a synthetic composition of NH4 +-N and COD of each 50?mg/l was studied for a HRT variation of 24, 12, 8 and 6 hours. The ammonium removal efficiencies were found to be in the range of 98 to 100% with the steady-state effluent concentrations of NH4 +-N and NO2 ?-N in the range of 1–4 mg/l and 0.1–0.2?mg/l respectively. In case of domestic sewage system, nitrification studies along with suspended solids removal study was carried-out on untreated sewage for a HRT variation of 24, 12 and 6 hours. The ammonium removal efficiencies of 100% were observed for all the three HRT values at very high COD/NH4 +-N ratio of 15. The suspended solids removal efficiencies of 95 to 98% were observed with the average effluent suspended solids concentration of 5.9 to 15.9?mg/l. The experiments were conducted in non-backwash conditions of the biofilter. The study has revealed the best use of the upflow biofilter system for nitrification applications and suspended solids removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号