首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetochore is the macromolecular protein complex that assembles onto centromeric DNA and binds spindle microtubules. Evolutionarily divergent kinetoplastids have an unconventional set of kinetochore proteins. It remains unknown how kinetochores assemble at centromeres in these organisms. Here, we characterize KKT2 and KKT3 in the kinetoplastid parasite Trypanosoma brucei. In addition to the N-terminal kinase domain and C-terminal divergent polo boxes, these proteins have a central domain of unknown function. We show that KKT2 and KKT3 are important for the localization of several kinetochore proteins and that their central domains are sufficient for centromere localization. Crystal structures of the KKT2 central domain from two divergent kinetoplastids reveal a unique zinc-binding domain (termed the CL domain for centromere localization), which promotes its kinetochore localization in T. brucei. Mutations in the equivalent domain in KKT3 abolish its kinetochore localization and function. Our work shows that the unique central domains play a critical role in mediating the centromere localization of KKT2 and KKT3.  相似文献   

2.
Chromosome segregation in eukaryotes is driven by the kinetochore, a macromolecular complex that connects centromeric DNA to microtubules of the spindle apparatus. Kinetochores in well-studied model eukaryotes consist of a core set of proteins that are broadly conserved among distant eukaryotic phyla. By contrast, unicellular flagellates of the class Kinetoplastida have a unique set of 36 kinetochore components. The evolutionary origin and history of these kinetochores remain unknown. Here, we report evidence of homology between axial element components of the synaptonemal complex and three kinetoplastid kinetochore proteins KKT16-18. The synaptonemal complex is a zipper-like structure that assembles between homologous chromosomes during meiosis to promote recombination. By using sensitive homology detection protocols, we identify divergent orthologues of KKT16-18 in most eukaryotic supergroups, including experimentally established chromosomal axis components, such as Red1 and Rec10 in budding and fission yeast, ASY3-4 in plants and SYCP2-3 in vertebrates. Furthermore, we found 12 recurrent duplications within this ancient eukaryotic SYCP2–3 gene family, providing opportunities for new functional complexes to arise, including KKT16-18 in the kinetoplastid parasite Trypanosoma brucei. We propose the kinetoplastid kinetochore system evolved by repurposing meiotic components of the chromosome synapsis and homologous recombination machinery that were already present in early eukaryotes.  相似文献   

3.
Mutations in the Drosophila melanogaster zw10 gene, which encodes a conserved, essential kinetochore component, abolish the ability of dynein to localize to kinetochores. Several similarities between the behavior of ZW10 protein and dynein further support a role for ZW10 in the recruitment of dynein to the kinetochore: (a) in response to bipolar tension across the chromosomes, both proteins mostly leave the kinetochore at metaphase, when their association with the spindle becomes apparent; (b) ZW10 and dynein both bind to functional neocentromeres of structurally acentric minichromosomes; and (c) the localization of both ZW10 and dynein to the kinetochore is abolished in cells mutant for the gene rough deal. ZW10''s role in the recruitment of dynein to the kinetochore is likely to be reasonably direct, because dynamitin, the p50 subunit of the dynactin complex, interacts with ZW10 in a yeast two-hybrid screen. Since in zw10 mutants no defects in chromosome behavior are observed before anaphase onset, our results suggest that dynein at the kinetochore is essential for neither microtubule capture nor congression to the metaphase plate. Instead, dynein''s role at the kinetochore is more likely to be involved in the coordination of chromosome separation and/or poleward movement at anaphase onset.  相似文献   

4.
Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd2+, Cu2+, Zn2+ and Pb2+, with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions.  相似文献   

5.
We report the molecular cloning and characterization of two novel β-N-acetylhexosaminidases (β-HEX, EC 3.2.1.52) from Paenibacillus sp. strain TS12. The two β-HEXs (Hex1 and Hex2) were 70% identical in primary structure, and the N-terminal region of both enzymes showed significant similarity with β-HEXs belonging to glycoside hydrolase family 20 (GH20). Interestingly, however, the C-terminal region of Hex1 and Hex2 shared no sequence similarity with the GH20 β-HEXs or other known proteins. Both recombinant enzymes, expressed in Escherichia coli BL21(DE3), hydrolyzed the β-N-acetylhexosamine linkage of chitooligosaccharides and glycosphingolipids such as asialo GM2 and Gb4Cer in the absence of detergent. However, the enzyme was not able to hydrolyze GM2 ganglioside in the presence or in the absence of detergent. We determined three crystal structures of Hex1; the Hex1 deletion mutant Hex1-ΔC at a resolution of 1.8 Å; Hex1-ΔC in complex with β-N-acetylglucosamine at 1.6 Å; and Hex1-ΔC in complex with β-N-acetylgalactosamine at 1.9 Å. We made a docking model of Hex1-ΔC with GM2 oligosaccharide, revealing that the sialic acid residue of GM2 could hinder access of the substrate to the active site cavity. This is the first report describing the molecular cloning, characterization and X-ray structure of a procaryotic β-HEX capable of hydrolyzing glycosphingolipids.  相似文献   

6.
A genetic synthetic dosage lethality (SDL) screen using CTF13 encoding a known kinetochore protein as the overexpressed reference gene identified two chromosome transmission fidelity (ctf) mutants, YCTF58 and YCTF26. These mutant strains carry independent alleles of a novel gene, which we have designated CTF19. In light of its potential role in kinetochore function, we have cloned and characterized the CTF19 gene in detail. CTF19 encodes a nonessential 369-amino acid protein. ctf19 mutant strains display a severe chromosome missegregation phenotype, are hypersensitive to benomyl, and accumulate at G2/M in cycling cells. CTF19 genetically interacts with kinetochore structural mutants and mitotic checkpoint mutants. In addition, ctf19 mutants show a defect in the ability of centromeres on minichromosomes to bind microtubules in an in vitro assay. In vivo cross-linking and chromatin immunoprecipitation demonstrates that Ctf19p specifically interacts with CEN DNA. Furthermore, Ctf19-HAp localizes to the nuclear face of the spindle pole body and genetically interacts with a spindle-associated protein. We propose that Ctf19p is part of a macromolecular kinetochore complex, which may function as a link between the kinetochore and the mitotic spindle.  相似文献   

7.

Background and Aims

Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized.

Methods

This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19.

Key Results

All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana.

Conclusions

OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.  相似文献   

8.
9.
The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.  相似文献   

10.
Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1-NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different stages of pathogenesis; however, the molecular and structural bases of the different roles of NmDsbAs are unclear. With the aim of determining the molecular basis for substrate specificity and how this correlates to pathogenesis, we undertook a biochemical and structural characterization of the three NmDsbAs. We report the 2.0-Å-resolution crystal structure of the oxidized form of NmDsbA1, which adopted a canonical DsbA fold similar to that observed in the structures of NmDsbA3 and Escherichia coli DsbA (EcDsbA). Structural comparisons revealed variations around the active site and candidate peptide-binding region. Additionally, we demonstrate that all three NmDsbAs are strong oxidases with similar redox potentials; however, they differ from EcDsbA in their ability to be reoxidized by E. coli DsbB. Collectively, our studies suggest that the small structural differences between the NmDsbA enzymes and EcDsbA are functionally significant and are the likely determinants of substrate specificity.  相似文献   

11.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins constitute an RNA-guided microbial defense system against invading foreign genetic materials. Cas2 is one of the core Cas proteins found universally in all the subtypes of CRISPR-Cas systems and is required for incorporating new spacers into CRISPR loci. Cas2 homologues from different CRISPR-Cas subtypes were characterized previously as metal-dependent nucleases with different substrate preferences, and it was proposed that a pH-dependent conformational change mediates metal binding and catalysis. Here, we report the crystal structures of Streptococcus pyogenes Cas2 at three different pHs (5.6, 6.5, and 7.5), as well as the results of its nuclease activity assay against double-stranded DNAs at varying pHs (6.0–9.0). Although S. pyogenes Cas2 exhibited strongly pH-dependent catalytic activity, there was no significant conformational difference among the three crystal structures. However, structural comparisons with other Cas2 homologues revealed structural variability and the flexible nature of its putative hinge regions, supporting the hypothesis that conformational switching is important for catalysis. Taken together, our results confirm that Cas2 proteins have pH-dependent nuclease activity against double-stranded DNAs, and provide indirect structural evidence for their conformational changes.  相似文献   

12.
13.
The cellular architecture of the female gonoduct of 68 nematode populations representing 42 species belonging to Tylenchidae, Belonolaimidae, Hoplolaimidae and Meloinema is shown to have an overall similarity in cellular gonoduct structure. The oviduct consists of two rows of four cells; the spermatheca is comprised of 10 to 20 cells, and the uterus cells, except in the case of Psilenchus, are arranged in four (Tylenchidae) or three (Belonolaimidae, Hoplolaimidae and Meloinema) regular rows. Although the genus Meloinema is classified within Meloidogynidae, its spermatheca is clearly hoplolaimid-like and lacks the spherical shape with lobe-like protruding cells typical of Meloidogyne. Detailed morphology of expelled gonoducts may provide a valuable character set in phylogenetic analysis, and the cellular morphology of the spermatheca appears to be a distinguishing feature at species level, especially in the genera Tylenchus and Geocenamus. Ultrastructural data on the oviduct-spermatheca region of Meloidogyne incognita complement light-microscopic (LM) results. The combination of LM of expelled organs and transmission electron microscopy (TEM) on selected sections is put forward as a powerful tool to combine three-dimensional knowledge with ultrastructural detail.  相似文献   

14.
Kinetochore proteins contribute to the fidelity of chromosome transmission by mediating the attachment of a specialized chromosomal region, the centromere, to the mitotic spindle during mitosis. In budding yeast, a subset of kinetochore proteins, referred to as the outer kinetochore, provides a link between centromere DNA-binding proteins of the inner kinetochore and microtubule-binding proteins. Using a combination of chromatin immunoprecipitation, in vivo localization, and protein coimmunoprecipitation, we have established that yeast Chl4p and Iml3p are outer kinetochore proteins that localize to the kinetochore in a Ctf19p-dependent manner. Chl4p interacts with the outer kinetochore proteins Ctf19p and Ctf3p, and Iml3p interacts with Chl4p and Ctf19p. In addition, Chl4p is required for the Ctf19p-Ctf3p and Ctf19p-Iml3p interactions, indicating that Chl4p is an important structural component of the outer kinetochore. These physical interaction dependencies provide insights into the molecular architecture and centromere DNA loading requirements of the outer kinetochore complex.  相似文献   

15.
Mycobacteria use specialized type VII (ESX) secretion systems to export proteins across their complex cell walls. Mycobacterium tuberculosis encodes five nonredundant ESX secretion systems, with ESX-1 being particularly important to disease progression. All ESX loci encode extracellular membrane-bound proteases called mycosins (MycP) that are essential to secretion and have been shown to be involved in processing of type VII-exported proteins. Here, we report the first x-ray crystallographic structure of MycP1(24–407) to 1.86 Å, defining a subtilisin-like fold with a unique N-terminal extension previously proposed to function as a propeptide for regulation of enzyme activity. The structure reveals that this N-terminal extension shows no structural similarity to previously characterized protease propeptides and instead wraps intimately around the catalytic domain where, tethered by a disulfide bond, it forms additional interactions with a unique extended loop that protrudes from the catalytic core. We also show MycP1 cleaves the ESX-1 secreted protein EspB from both M. tuberculosis and Mycobacterium smegmatis at a homologous cut site in vitro.  相似文献   

16.
Wolbachia surface protein (WSP) is an eight beta-barrel transmembrane structure which participates in host immune response, cell proliferation, pathogenicity and controlled cell death program. The protein has four extracellular loops containing hyper variable regions separated by conserved regions. The WSP structure is homologous to Neisseria surface protein (Nsp A) which has about 34% similarity including antigenic variation and hydrophilicity. Recombination has a large impact on diversity of this protein including positive selection which is major constraint on protein evolution. The molecular mechanism through which Wolbachia induces various reproductive anomalies is unclear; a key feature observed for such anomalies might be because of Wolbachia undergoing extensive recombination. In Wolbachia, increased recombination is observed in ankyrin proteins, surface proteins and in some hypothetical proteins. Genetic divergence is extensive in the WSP gene, WSP is known to be a chimeric protein involved in host-symbiont interactions. Here we predicted the structural and functional variations in WSP sequences of Wolbachia present in D. melanogaster, A. tabida and in B. malayi.  相似文献   

17.
Sylvia S. Dias 《FEBS letters》2009,583(22):3543-3548
The E3 ubiqutin ligase, murne double-minute clone 2 (MDM2), promotes the degradation of p53 under normal homeostatic conditions. Several serine residues within the acidic domain of MDM2 are phosphorylated to maintain its activity but become hypo-phosphorylated following DNA damage, leading to inactivation of MDM2 and induction of p53. However, the signalling pathways that mediate these phosphorylation events are not fully understood. Here we show that the oncogenic and cell cycle-regulatory protein kinase, polo-like kinase-1 (PLK1), phosphorylates MDM2 at one of these residues, Ser260, and stimulates MDM2-mediated turnover of p53. These data are consistent with the idea that deregulation of PLK1 during tumourigenesis may help suppress p53 function.

Structured summary

MINT-7266353: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by pull down (MI:0096)MINT-7266344, MINT-7266329: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by anti bait coimmunoprecipitation (MI:0006)MINT-7266250: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) p53 (uniprotkb:P04637) by protein kinase assay (MI:0424)MINT-7266241, MINT-7266318: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) MDM2 (uniprotkb:P23804) by protein kinase assay (MI:0424)MINT-7266231, MINT-7266805, MINT-7266264, MINT-7266299: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)  相似文献   

18.
Bacterial chromosomal toxin-antitoxin (TA) systems have been proposed not only to play an important role in the stress response, but also to be associated with antibiotic resistance. Here, we identified the chromosomal HP0892-HP0893 TA proteins in the gastric pathogen, Helicobacter pylori, and structurally characterized their protein-protein interaction. Previously, HP0892 protein was suggested to be a putative TA toxin based on its structural similarity to other RelE family TA toxins. In this study, we demonstrated that HP0892 binds to HP0893 strongly with a stoichiometry of 1:1, and HP0892-HP0893 interaction occurs mainly between the N-terminal secondary structure elements of HP0892 and the C-terminal region of HP0893. HP0892 cleaved mRNA in vitro, preferentially at the 5′ end of A or G, and the RNase activity of HP0892 was inhibited by HP0893. In addition, heterologous expression of HP0892 in Escherichia coli cells led to cell growth arrest, and the cell toxicity of HP0892 was neutralized by co-expression with HP0893. From these results and a structural comparison with other TA toxins, it is concluded that HP0892 is a toxin with intrinsic RNase activity and HP0893 is an antitoxin against HP0892 from a TA system of H. pylori. It has been known that hp0893 gene and another TA antitoxin gene, hp0895, of H. pylori, are both genomic open reading frames that correspond to genes that are potentially expressed in response to interactions with the human gastric mucosa. Therefore, it is highly probable that TA systems of H. pylori are involved in virulence of H. pylori.  相似文献   

19.
20.
The kinetochore creates chromosomal attachment sites for microtubules. The kinetochore-microtubule interface plays an important role in ensuring accurate transmission of genetic information to daughter cells. Bombyx mori is known to possess holocentric chromosomes, where spindle microtubules attach along the entire length of the chromosome. Recent evidence suggests that CENP-A and CENP-C, which are essential for centromere structure and function in other species, have lost in holocentric insects, implying that B. mori is able to build its kinetochore regardless of the lack of CENP-A and CENP-C. Here we report the identification of three outer kinetochore genes in the silkworm B. mori by using bioinformatics and RNA interference-based screening. While the homologs of Ndc80 and Mis12 have strong similarity with those of other organisms, the five encoded proteins (BmNuf2, BmSpc24, BmSpc25, BmDsn1 and BmNnf1) are highly diverged from their counterparts in other species. Microscopic studies show that the outer kinetochore protein is distributed along the entire length of the chromosomes, which is a key feature of holocentric chromosomes. We also demonstrate that BmDsn1 forms a heterotrimeric complex with BmMis12 and BmNnf1, which acts as a receptor of the Ndc80 complex. In addition, our study suggests that a small-scale RNAi-based candidate screening is a useful approach to identify genes which may be highly divergent among different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号