首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Bcl-2-linked apoptosis due to increase in NO synthase in brain of SAMP10   总被引:5,自引:0,他引:5  
We examined the linkage of nitric oxide (NO)-induced apoptosis to acceleration of brain aging of senescence-accelerated mouse prone 10 (SAMP10). The expression of neuronal nitric oxide synthase (nNOS) increased in the cerebral cortex of the brain of SAMP10 in an age-dependent manner and significantly higher levels of neuronal nitric oxide synthase (nNOS) were observed in both young and old SAMP10 as compared to age-matched controls. Moreover, a lower level of anti-apoptotic protein Bcl-2 and a higher level of pro-apoptotic protein cytochrome c in cytosol were observed in SAMP10 compared to the control. However, there was no significant difference in the expression of pro-apoptotic protein p53 between SAMP10 and the control. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive apoptotic cells were more abundant in the cerebral cortex of aged SAMP10 than in the control. The present results suggest that an age-dependent increase of NO by up-regulation of nNOS promotes the Bcl-2-linked apoptosis in the cerebral cortex of SAMP10 and this may cause the acceleration of brain aging of SAMP10.  相似文献   

4.
Cytoskeletal regulation of nitric oxide synthase   总被引:7,自引:0,他引:7  
  相似文献   

5.
Zhang XR  Wang YX  Zhang ZJ  Li L  Reynolds GP 《PloS one》2012,7(4):e33247
Antipsychotic-induced sexual dysfunction is a common and serious clinical side effect. It has been demonstrated that both neuronal nitric oxide (nNOS) and dopamine D2 receptor (DRD2) in the medial preoptic area (MPOA) and the paraventricular nucleus (PVN) of the hypothalamus have important roles in the regulation of sexual behaviour. We investigated the influences of 21 days' antipsychotic drug administration on expression of nNOS and DRD2 in the rat hypothalamus. Haloperidol (0.5 mg/kg/day i.p.) significantly decreased nNOS integrated optical density in a sub-nucleus of the MPOA, medial preoptic nucleus (MPN), and decreased the nNOS integrated optical density and cell density in another sub-nucleus of the MPOA, anterodorsal preoptic nucleus (ADP). Risperidone (0.25 mg/kg) inhibited the nNOS integrated optical density in the ADP. nNOS mRNA and protein in the MPOA but not the PVN was also significantly decreased by haloperidol. Haloperidol and risperidone increased DRD2 mRNA and protein expression in both the MPOA and the PVN. Quetiapine (20 mg/kg/day i.p.) did not influence the expression of nNOS and DRD2 in either the MPOA or the PVN. These findings indicate that hypothalamic nNOS and DRD2 are affected to different extents by chronic administration of risperidone and haloperidol, but are unaffected by quetiapine. These central effects might play a role in sexual dysfunction induced by certain antipsychotic drugs.  相似文献   

6.
The lateral hypothalamic area (LHA), a key site involved in the central control of feeding and energy homeostasis, contains populations of neurons that produce the orexin peptides or nitric oxide, two chemical factors that increase food intake. In this study, we used immunohistochemistry to investigate the possibility that rat LHA neurons co-express orexin-A and neuronal nitric oxide synthase (nNOS). The orexin-A and nNOS cell populations in the LHA showed extensive overlap without co-localization, and no evidence of direct anatomic contact was found. The finding that LHA neurons do not co-localize orexin-A and nNOS may suggest that the actions of the orexins and nitric oxide on food intake are mediated via independent mechanisms, however, nitric oxide is a diffusible molecule and could potentially affect the activity of orexin neurons via a non-synaptic mechanism.  相似文献   

7.
Our previous studies showed a differential distribution of the glutamatergic terminals in cytochrome oxidase-rich and -poor regions of the visual cortex. The NMDA type of glutamate receptors have been proposed to be involved in the activation of nitric oxide synthase to produce nitric oxide, the neurotransmitter. In the present study, we hypothesized that the expressions of glutamate receptor, NMDA receptors (NMDAR1) and neuronal nitric oxide synthase (nNOS) were colocalized and were also correlated with that of cytochrome oxidase (CO) in a subset of neurons. We used primary cultures of postnatal rat visual cortical neurons as a model system, so that we could examine both the somatic and dendritic expressions of these neurochemicals in individual neurons. We found a difference in the sequence of developmental expressions of NMDAR1, nNOS, CO, and Na+/K+ ATPase. Triple labeling showed that all nNOS-positive neurons were immunoreactive for NMDAR1, and a subpopulation of them had high CO activity. The expression of NMDAR1 was positively correlated with CO activity. This is consistent with our previous finding that CO activity is strongly governed by excitatory glutamatergic synapses. After 40 hours of depolarizing potassium chloride treatment, CO activity was increased, and NMDAR1and nNOS levels were up-regulated in parallel. One week of tetrodotoxin significantly decreased the expression of NMDAR1, nNOS, and CO activity. Our results demonstrate that NMDA receptors and nNOS do co-exist in a subset of neurons that have high CO activity and their expressions are under the control of neuronal activity.  相似文献   

8.
We determined the cellular mRNA expression of all intrarenal nitric oxide (NO)-producing NO synthase (NOS) isoforms, endothelial NOS (eNOS) and neuronal NOS (nNOS) and inducible NOS (iNOS) in kidneys from wild-type mice (WT) and immune deficient Toll-like receptor 4 (TLR4) mutant mice, during normal physiological conditions and during a short-term (6–16 h) endotoxic condition caused by systemically administered lipopolysaccaride (LPS). Investigations were performed by means of in situ hybridization and polymerase chain reaction amplification techniques. In WT, LPS altered the expression rate of all intrarenal NOS isoforms in a differentiated but NOS-isoform coupled expression pattern, with iNOS induction, and up- and down-regulation of the otherwise constitutively expressed NOS isoforms, e.g. eNOS and nNOS and an iNOS isotype. In TLR4 mutants, LPS caused none or a lowered iNOS induction, but altered the expression rate of the constitutive NOS isoforms. It is concluded that the intrarenal spatial relation of individual NOS-isoforms and their alteration in expression provide the basis for versatile NO-mediated renal actions that may include local interactions between NOS isoforms and their individual NO-target sites, and that the NOS-isoform dependent events are regulated by TLR4 during endotoxic processes. These regulatory mechanisms are likely to participate in different pathophysiological conditions affecting NO-mediated renal functions.  相似文献   

9.
NO-synthase (NOS) is a heme-containing enzyme that catalyzes the oxidation of L-arginine to nitric oxide, an important cellular signaling molecule. Recently, it was found that aqueous extracts of tobacco cigarettes cause the inactivation of the neuronal isoform of NOS (nNOS) and that this may explain some of the toxicological effects of smoking. Although the exact identity of the chemical inactivator(s) is not known, we wondered if extracts prepared from other plants, including those closely related to tobacco, Nicotiana tabacum (Solanaceae), would similarly inactivate nNOS. We examined 33 plants, representing diverse members of the plant kingdom ranging from whisk fern, Psilotum nudum (Psilotaceae) to tobacco and discovered 18 plants that contain a chemical inactivator(s) of nNOS. Of these plants, 16 are members of the core asterids flowering plant group. Of these asterids, 6 are members of the Solanaceae family, of which tobacco is a member. Based on the phylogenetic relationship of the plants, it is possible that the same chemical or related chemical inactivator(s) exist. This, in turn, may help elucidate the structure of the chemical(s), as well as provide a source of a potentially novel inactivator of nNOS. The alkaloid nicotine can be excluded as putative nNOS inhibitor.  相似文献   

10.
Abstract: Intrastriatal administration of the reversible succinate dehydrogenase inhibitor malonate produces both energy depletion and striatal lesions by a secondary excitotoxic mechanism. To investigate the role of nitric oxide (NO) in the pathogenesis of the lesions we examined malonate toxicity in mice in which the genes for neuronal nitric oxide synthase (nNOS) or endothelial nitric oxide synthase (eNOS) were disrupted. Malonate striatal lesions were significantly attenuated in the nNOS mutant mice, and they were significantly increased in the eNOS mutant mice. Malonate-induced increases in levels of 2,3- and 2,5-dihydroxybenzoic acid/salicylate, markers of hydroxyl radical generation, were significantly attenuated in the nNOS knockout mice. Malonate-induced increases in 3-nitrotyrosine, a marker for peroxynitrite-mediated damage, were blocked in the nNOS mice, whereas a significant increase occurred in the eNOS mice. These findings show that NO produced by nNOS results in generation of peroxynitrite, which plays a role in malonate neurotoxicity.  相似文献   

11.
Endogenous expression of nNOS protein in several neuronal cell lines   总被引:3,自引:0,他引:3  
Several neuronal cell lines were screened for endogenous expression of neuronal nitric oxide synthase (nNOS) protein using Western blot analysis. Detectable levels of the nNOS protein were evident in the SK-N-SH, SH-SY5Y, and N1E-115 neuroblastoma cell lines, as well as the NG108-15 neuroblastoma x glioma hybrid. Only trace amounts were visible in Neuro2A human neuroblastoma cells. The presence of endogenously expressed nNOS in these cells may allow for the study of the interaction between nNOS and the endogenous receptor systems expressed in the same cells.  相似文献   

12.
Postsynaptic density (PSD)-95 is originally isolated from glutamatergic synapse where it serves as a physical tether to allow neuronal nitric oxide synthase (nNOS) signaling by N-methyl-D-aspartate receptor (NMDAR) activity. Considering the physiological importance of glutamate receptor and nitric oxide (NO) during development, we examined the spatiotemporal expression of PSD-95 and nNOS in the lumbar spinal cord at a postnatal stage. Temporally, both gene and protein levels of them gradually increased with age after birth, peaked at the postnatal day 14 (P14), and then decreased to an adult level. In addition, the enhanced coimmunoprecipitations between PSD-95 and nNOS were detected in developing spinal cord. Spatially, PSD-95 staining codistributed with nNOS in NeuN-positive motor neurons and sensory neurons at P14. These findings indicate that PSD-95 and nNOS might collectively participate in spinal cord development.  相似文献   

13.
Using in vivo voltammetry to directly measure extracellular nitric oxide (NO) levels, our previous studies suggested that the neuronal NO synthase (nNOS) and cyclic guanosine monophosphate (cGMP) signal transducing systems are involved in the cardiovascular responses elicited by activation of N-methyl-D-aspartate (NMDA) receptors in the rostral ventrolateral medulla. In this study, we examined if the depressor responses elicited by activation of NMDA receptors in the caudal ventrolateral medulla (CVLM) also depend on the actions of nNOS and soluble guanylyl cyclase. In anesthetized cats, microinjection of NMDA into the CVLM produced hypotension and bradycardia associated with NO formation. These NMDA-induced responses were attenuated by prior injections of 2-amino-5-phosphonopentanoate (a NMDA receptor competitive antagonist), 7-nitroindazole (a nNOS inhibitor) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). These findings suggest that NO is also involved in the NMDA-induced depressor responses of the CVLM.  相似文献   

14.
Many marine organisms spend the early part of their lives as larvae suspended in the water column before metamorphosing into benthic reproductive adults. Metamorphosis does not occur until a larva has become competent to respond to appropriate stimuli and after a suitable habitat for the young juvenile has been encountered. The gaseous neurotransmitter nitric oxide is thought to be important in the regulation of metamorphosis by holding the organism in the larval state. We have investigated expression of the neuronal nitric oxide synthase (nNOS) gene in larval and metamorphosing individuals of the marine mud snail Ilyanassa obsoleta. Our results indicate that nNOS is expressed at constant levels throughout larval development. In contrast, expression of nNOS decreases markedly during the first 24 h of metamorphosis. Our observations support previous findings that demonstrate that nitric oxide is present in larvae though competence. The decrease in nNOS gene expression that occurs during metamorphosis corresponds with a previously described reduction in nNOS activity.  相似文献   

15.
The neuroprotective effect of MK801 against hypoxia and/or reoxygenation-induced neuronal cell injury and its relationship to neuronal nitric oxide synthetase (nNOS) expression were examined in cultured rat cortical cells. Treatment of cortical neuronal cells with hypoxia (95% N(2)/5% CO(2)) for 2 h followed by reoxygenation for 24 h induced a release of lactate dehydrogenase (LDH) into the medium, and reduced the protein level of MAP-2 as well. MK801 attenuated the release of LDH and the reduction of the MAP-2 protein by hypoxia, suggesting a neuroprotective role of MK801. MK801 also diminished the number of nuclear condensation by hypoxia/reoxygenation. The NOS inhibitors 7-nitroindazole (7-NI) and N (G)-nitro-L-arginine methyl ester (L-NAME), as well as the Ca(2+) channel blocker nimodipine, reduced hypoxia-induced LDH, suggesting that nitric oxide (NO) and calcium homeostasis contribute to hypoxia and/or the reoxygenation-induced cell injury. The levels of nNOS immunoactivities and mRNA by RT-PCR were enhanced by hypoxia with time and, down regulated following 24 h reoxygenation after hypoxia, and were attenuated by MK801. In addition, the reduction of nNOS mRNA levels by hypoxia/reoxygenation was also diminished by MK801. Further delineation of the mechanisms of NO production and nNOS regulation are needed and may lead to additional strategies to protect neuronal cells against hypoxic/reoxygenation insults.  相似文献   

16.
Li J 《Life sciences》2002,71(24):2833-2843
Contraction of skeletal muscle evokes increases in arterial blood pressure and heart rate. Some regions of the brainstem have been implicated for expression of the cardiovascular responses to muscle contraction. Previous studies have reported that static muscle contraction induced c-Fos protein in the nucleus of tractus solitarii (NTS), lateral reticular nucleus (LRN), lateral tegmental field (FTL), subretrofacial nucleus (SRF), A1 region and periaqueductal gray (PAG) of the brainstem. Furthermore, neuronal NADPH-diaphorase (NADPH-d), which is considered as a marker of neuronal nitric oxide synthase (nNOS), has been localized in those same regions. In this study, static muscle contraction was induced by electrical stimulation of the L7 and S1 ventral roots in anaesthetized cats. Distribution of c-Fos protein within neurons containing nNOS was evaluated by double labeling methods in order to determine if nNOS containing neurons in the brainstem were activated during muscle contraction. The results indicate that c-Fos protein colocalized with NADPH-d positive staining within the neurons of the SRF and PAG, but not within the NTS neurons. Distinct number of neurons with c-Fos protein was in close proximity to NADPH-d positive staining in the NTS, SRF, and PAG. Coexisting of c-Fos protein and NADPH-d positive staining was not observed in the LRN, FTL and A1 region. These findings demonstrate that nNOS containing neurons were activated by muscle contraction in the selective regions of the brainstem, and nNOS positive staining had close anatomic contacts with the neurons activated by contraction. This result provides neuroanatomic evidence suggesting that nitric oxide modulates the cardiovascular responses to muscle contraction within the NTS, SRF and PAG of the brainstem.  相似文献   

17.
In this study, we investigated the molecular mechanism of toxicity of 1-methyl-4-phenylpyridinium (MPP+), an ultimate toxic metabolite of a mitochondrial neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, that causes parkinsonism in experimental animals and humans. Using wild-type and human neuronal nitric oxide synthase (nNOS) stably transfected neuroblastoma cells (SH-SY5Y), we showed that nNOS overexpression in SH-SY5Y cells greatly enhanced proteasome activity and mitigated MPP+-induced apoptosis. During MPP+-induced oxidative stress, intracellular BH4 levels decreased, resulting in nNOS "uncoupling" (i.e., switching from nitric oxide to superoxide generation). Increasing the intracellular BH4 levels by sepiapterin supplementation restored the nNOS activity, inhibited superoxide formation, increased proteasome activity, decreased protein ubiquitination, and attenuated apoptosis in MPP+-treated cells. Implications of BH4 depletion in dopaminergic cells and sepiapterin supplementation to augment the striatal nNOS activity in the pathogenesis mechanism and treatment of Parkinson disease are discussed.  相似文献   

18.
Disruptions of glutamatergic and noradrenergic signaling have been postulated to occur in depressive disorders. Glutamate provides excitatory input to the noradrenergic locus coeruleus (LC). In this study, the location of immunoreactivity against neuronal nitric oxide synthase (nNOS), an intracellular mediator of glutamate receptor activation, was examined in the normal human LC, and potential changes in nNOS immunoreactivity that might occur in major depression were evaluated. Tissue containing LC, and a non-limbic, LC projection area (cerebellum) was obtained from 11 to 12 matched pairs of subjects with major depression and control subjects lacking major psychiatric diagnoses. In the LC region, nNOS immunoreactivity was found in large neuromelanin-containing neurons, small neurons lacking neuromelanin, and glial cells. Levels of nNOS immunoreactivity were significantly lower in the LC (- 44%, p < 0.05), but not in the cerebellum, when comparing depressed with control subjects. nNOS levels were positively correlated with brain pH values in depressed, but not control, subjects in both brain regions. Low levels of nNOS in the LC may reflect altered excitatory input to this nucleus in major depression. However, pH appears to effect preservation of nNOS immunoreactivity in subjects with depression. This factor may contribute, in part, to low levels of nNOS in depression.  相似文献   

19.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   

20.
Acrylamide (ACR) is a known industrial neurotoxic chemical. Evidence suggests that ACR neurotoxic effect is related to brain neurotransmission disturbances. Since nitric oxide (NO) acts as a neurotransmission modulator and is produced by nitric oxide synthase (NOS), the neuronal NOS (nNOS) and inducible NOS (iNOS) expression pattern were determined in rat cerebral cortex and striatum after subchronic exposure to ACR. Using immunocytochemistry, the neuronal count of nNOS or optical density of iNOS from sections at three coronal levels, bregma 1.0, -0.4, and -2.3 mm, were compared between ACR-treated and control rats. At all three levels, nNOS expressions were uniformly decreased in most of the neocortical subregions following the treatment of ACR. At bregma level 1.0 mm, total numbers of nNOS expressing neurons were significantly decreased to 58.7% and 64.7% of the control in the cortex and striatum of ACR-treated rats, respectively. However, at the bregma level -2.3 mm, ACR treatment did not produce a significant difference in the numbers of nNOS expressing neurons both in the cortex and striatum. Contrary to nNOS, iNOS expressions were consistently increased to approximately 32% in the neocortex and 25% in the striatum, following the subchronic ACR treatment. These data suggest that subchronic ACR exposure involves compensatory mechanism on nNOS and iNOS expression to maintain the homeostasis of NO at the rostral part of the neocortex and the striatum. However, in the caudal brain, increased iNOS expression did not suppress nNOS expression. Therefore, the present study is consistent with the hypothesis that ACR toxicity is mediated through the disturbance to the NO signaling pathway and exhibits a rostrocaudal difference through the differential expressions of nNOS and iNOS in the neocortex and the striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号