首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and biochemical aspects of nematode collagens.   总被引:3,自引:0,他引:3  
Collagens are major structural proteins of nematode cuticles and basement membranes (basal laminae). The collagen proteins that form these structures differ in their biochemical and physical properties and are encoded by distinct gene families. Nematode basement membrane collagens are large proteins that show strong homology to basement membrane collagens of vertebrates. There appear to be 2 nonidentical basement membrane collagen genes in nematodes. Cuticle collagens are about one-sixth the size of basement membrane collagens and are encoded by a large family of 20-150 nonidentical genes. Cuticle collagens can be subdivided into 4 families based upon certain structural features in the proteins. The mature, extracellular forms of both types of collagen proteins are extensively cross-linked by disulfide bonds and are largely insoluble in the absence of a thiol-reducing agent. Cuticle collagens also are cross-linked by nonreducible covalent bonds that involve tyrosine residues. The experimental studies that have led to our current understanding of the structures of basement membrane and cuticle collagens are reviewed. Some previous questions about the physical properties of these proteins are reexamined in light of the primary sequence information now available for the proteins.  相似文献   

2.
The cuticle of the free-living nematode Caenorhabditis elegans is a proteinaceous extracellular structure that is replaced at each of four postembryonic molts by the underlying hypodermis. The cuticles of the adult and three juvenile stages (L1, Dauer larva, L4) have been compared ultrastructurally and biochemically. Each cuticle has an annulated surface and comprises two main layers, an inner basal layer and an outer cortical layer. The adult cuticle has an additional clear layer which separates the basal and cortical layers and is traversed by regularly arranged columns of electron-dense material. The fine structure of the cortical layer is similar in cuticles from different stages while that of the basal layer is stage specific. Purified cuticles were obtained by sonication and treatment with sodium dodecyl sulfate (SDS) and their component proteins solubilized with a sulfhydryl reducing agent. The degree of cuticle solubility is stage specific and the insoluble structures for each cuticle were localized by electron microscopy. Analysis of 35S-labeled soluble cuticle proteins by SDS-polyacrylamide gel electrophoresis yields unique banding patterns for each stage. Most proteins are of high molecular weight (100–200 K) and are restricted to particular stages. Sixteen of the nineteen major proteins characterized are specifically degraded by bacterial collagenase. The results indicate that the different molts are not reiterative, but require the integration of both unique and shared gene functions. The potential use of stage-specific cuticle differences to identify and characterize regulatory genes controlling cuticle-type switching during development is discussed.  相似文献   

3.
Cuticles isolated from second-stage juveniles and adult females of Meloidogyne incognita were purified by treatment with 1% sodium dodecyl sulfate (SDS). The juvenile cuticle was composed of three zones differing in their solubility in β-mercaptoethanol (BME). Proteins in the cortical and median zones were partially soluble in BME, whereas the basal zone was the least soluble. The BME-soluble proteins from the juvenile cuticle were separated into 12 bands by SDS-polyacrylamide gel electrophoresis and characterized as collagenous proteins based on their sensitivity to collagenase and amino acid composition. The adult cuticle consisted of two zones which were dissolved extensively by BME. The basal zone was completely solubilized, leaving behind a network of fibers corresponding to the cortical zone. The BME-soluble proteins from the adult cuticle were separated by electrophoresis into nine bands one of which constituted > 55% of the total BME-soluble proteins. All bands were characterized as collagenous proteins. Collagenous proteins from juvenile cuticles also contained glycoproteins which were absent from the adult cuticles.  相似文献   

4.
Partial characterization of carboxyl, sulfate, and phosphate groups on the Caenorhabditis elegans cuticle and intestinal microvilli was achieved by en face labeling of floating cryosections at two pH levels and specific blockage of sulfate groups by Alcian blue. All negatively charged groups on the cuticle and intestinal microvilli labeled heavily at pH 7.2–7.4. Pretreatment to block sulfate groups followed by ferritin labeling at pH 7.2–7.4 gave a 35% reduction of binding on the cuticle and an 80% reduction in binding on the microvilli. At pH 1.8 or 2.5, only the sulfate groups labeled as shown by the complete abolition of labeling on the cuticle and the microvilli following blockage of the sulfate groups. Molecules with accessible sulfate groups were distributed in clusters throughout the cortical layer of the cuticle, were present in the struts of the median layer but were absent from the basal layer. The advantages of applying molecular probes to cryosections as compared to sections prepared by standard electron microscopical techniques are discussed.  相似文献   

5.
Two components, a basal cuticle and an epicuticle, make up the cuticle ofA. mucosa. The basal cuticle consists of collagen fibrils, which are arranged in about 20 layers. The orientation of the fibrils changes rectangularly from one layer to the next. Fine filaments interweave the basal cuticle. The epicuticle, which is covered by a layer of electron dense material, is composed of irregularly arranged thin filaments. Branched microvilli of the epidermal cells penetrate the cuticle. Bacteria are found in the basal cuticle. Dorsally each segment has a band of densely packed smooth cilia. Laterally and partly ventrally aggregates of cilia are observed. These cilia exhibit apically artificial swellings. At least six different mucous cells are observed in the epidermis, morphologically distinguishable by the structure of the secretion products. Mucus is secreted via exocytosis through cuticular pores. During this process the mucus might expand. The secreted mucus consists of filamentous subunits.  相似文献   

6.
The infective third-stage juvenile of Trichostrongylus colubriformis is surrounded by its own cuticle as well as the incompletely moulted cuticle of the second-stage juvenile, which is referred to as the sheath. The sheath comprises an outer epicuticle, an amorphous cortical zone, a fibrous basal zone and an inner electron-dense layer. The basal zone of the sheath consists of three layers of fibres; the fibres are parallel within each layer, but the fibre direction of the middle layer is at an angle to that of the inner and outer layers. The cuticle comprises a complex outer epicuticle, an amorphous cortical zone and a striated basal zone. The lateral alae of the cuticle and the sheath are aligned and overlie the lateral hypodermal cords. The lateral alae of the sheath consist of two wing-like expansions of the cortical zone with associated specializations of the inner electron-dense layer which form a groove. The cuticular lateral alae consist of two tube-like expansions of the cortical zone. The lateral alar complex of the cuticle and the sheath may maximise locomotory efficiency and prevent rotation of the juvenile within the sheath.  相似文献   

7.
The cuticle of the nematode Caenorhabditis elegans forms the barrier between the animal and its environment. In addition to being a protective layer, it is an exoskeleton which is important in maintaining and defining the normal shape of the nematode. The cuticle is an extracellular matrix consisting predominantly of small collagen-like proteins that are extensively crosslinked. Although it also contains other protein and non-protein compounds that undoubtedly play a significant part in its function, the specific role of collagen in cuticle structure and morphology is considered here. The C. elegans genome contains between 50 and 150 collagen genes, most of which are believed to encode cuticular collagens. Mutations that result in cuticular defects and grossly altered body form have been identified in more than 40 genes. Six of these genes are now known to encode cuticular collagens, a finding that confirms the importance of this group of structural proteins to the formation of the cuticle and the role of the cuticle as an exoskeleton in shaping the worm. It is likely that many more of the genes identified by mutations giving altered body form, will be collagen genes. Mutations in the cuticular collagen genes provide a powerful tool for investigating the mechanisms by which this group of proteins interact to form the nematode cuticle.  相似文献   

8.
The phylogenetic interpretation of the nematode cuticle ultrastructure is reviewed within the framework of recent DNA-sequence data. In particular, the structure of the median and basal zones is discussed. Several structural elements of the cuticle seem to have arisen independently several times within the Nematoda and thus are highly homoplasious (e.g. the cortical or basal radial striae, spiral fibre layers and a fluid matrix with struts). Moreover, identifying the homology of the nematode cuticle ultrastructures is often very difficult at deep taxonomic levels. Hence, the cuticle appears to be unreliable regarding resolution of deep-level relationships in the Nematoda. However, at less inclusive taxonomic levels (e.g. families, genera, ...) the cuticle seems to be a more reliable phylogenetic marker.  相似文献   

9.
Proteolysis of Nereis cuticle collagen by two bacterial collagenases was investigated using viscosimetry, enzyme kinetics, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and ion exchange chromatography of collagenolytic peptides. Collagenase of the marine Vibrio B-30 completely degrades native cuticle collagen at 7 degress C with a turnover number 50 times greater than that of the clostridial collagenase. Although turnover numbers for the two enzymes are comparable when using denatured cuticle collagen as substrate, the vibrial collagenase appears to cleave twice as many peptide bonds per mg of cuticle collagen as does the clostridial enzyme. Sodium dodecyl sulfate gel electrophoresis of collagenase-digested native cuticle collagen reflects the resistance of the collagen to clostridial collagenase; however, the vibrial enzyme completely degrades the cuticle collagen with the formation of one transient intermediate (Mr 400,000). Peptide analysis of fully digested denatured cuticle collagen reveals that the two enzymes have a number of qualitative and quantitative similarities. Despite these, however, only the vibrial collagenase seems capable of extensively degrading native cuticle collagen.  相似文献   

10.
The ultrastructure of the body wall cuticle in Acrobeles complexus, Cervidellus alutus, and Zeldia punctata was studied as a step toward understanding biological diversity within Cephalobinae, and to discover new characters for phylogeny-based classification of the suborder. In each species the cuticle consists of cortical, median, and basal layers. The cortical layer includes an external trilaminate and internal granular zone; the basal layer is striated. In Z. punctata the median layer is electron-lucent, vacuolar, and penetrates the cortical layer; it also includes periodically dense columns that apparently correspond to punctuations visible with light microscopy. In contrast, the median layer of the body wall cuticle in A. complexus and C. alutus is bisected by a zone that undulates parallel to the nematode surface and with periodicity corresponding to annuli. Phylogenetic analysis, using derived cuticle patterns of Cephalobinae, requires an understanding of ecological pressures that could result in convergent evolution of cuticle characters.  相似文献   

11.
The epidermis of Eisenia is covered by a cuticle and rests on a basement lamella. The cuticle, which is resistant to a variety of enzymes, is composed of non-striated, bundles of probable collagen fibers that are orthogonally oriented and are embedded in a proteoglycan matrix. The basement lamella consists of striated collagen fibers with a 560 Å major periodicity. Proximity and morphology suggest that the epidermis may contribute to both the cuticle and the basement lamella — that is, the single tissue may synthesize at least two types of collagen. The epidermis is a pseudostratified epithelium containing three major cell types (columnar, basal and gland) and a rare fourth type with apical cilia. The esophagus is lined by a simple cuticulated epithelium composed predominantly of a single cell type, which resembles the epidermal columnar cell. Rare gland cells occur in the esophageal epithelium, but basal cells are lacking.  相似文献   

12.
The sqt-1 gene encodes a C. elegans cuticle collagen that when defective can cause dramatic alterations of organismal morphology. Specific antisera were used to examine the assembly of wild-type and mutant SQT-1 in the cuticle. Wild-type SQT-1 chains associate into dimer, tetramer, and higher oligomers that are cross-linked by non-reducible, presumably tyrosine-derived, covalent bonds. The SQT-1 pattern differs from the bulk of cuticle collagens which are found in trimer and larger forms. sqt-1 mutations that cause left-handed helical twisting of animals remove a conserved carboxyl-domain cysteine and inhibit formation of these non-reducible bonds. SQT-1 monomers accumulate and novel trimer-sized products form. A conserved tyrosine immediately adjacent to the affected cysteine suggests that disulfide bond formation is required for this tyrosine to form a cross-link. sqt-1 mutations that cause right-handed helical twisting affect conserved arginines in a predicted cleavage site for a subtilisin-like protease. These mutant SQT-1 molecules retain residues on the amino side of the predicted cleavage site and are larger than wild-type by the amount expected if cleavage failed to occur. The conservation of this site in all nematode cuticle collagens indicates that they are all synthesized as procollagens that are processed by subtilisin-like proteases.  相似文献   

13.
Reduced and methylated collagen from Ascaris lumbricoides cuticle was resolved into three major components by chromatography on phosphocellulose. The components have similar molecular weights of about 52,000 by sedimentation equilbrium and molecular sieve chromatography, but they have different amino acid compositions. Since they do not appear to be stoichiometrically related, they apparently represent chains from collagens of more than one type. All three chains contain about 27 residue % glycine, 36 residues of proline, and 17 residues of methylcysteine, suggesting that the collagens can be maximally about 80% triple helical and are extensively disulfide cross-linked in the native state. Two minor components from the cuticle are apparently derived from one of the major chains by cleavage in a single region to give two-third and one-third fragments.  相似文献   

14.
The midgut of Portunus sanguinolentus comprises the intestine, the anterior and posterior midgut caeca and the hepatopancreas. The hindgut comprises the rectum, which continues to the anus, a slit-like opening on the ventral surface of the telson. The limits of the midgut and hindgut are specified. The midgut has no cuticle, whereas the hindgut is lined with a cuticle composed of an outer keratin and an inner collagen layer. Four types of cells--E,R,F, and B--were differentiated in the hepatopancreas. Histochemically, the hepatopancreas contains moderate amounts of glycogen and large quantities of lipids and proteins, but no mucopolysaccharides.  相似文献   

15.
Rabbit antisera were raised against an 18 amino acid-long peptide that corresponds to the predicted sequence of the carboxy-terminal, nontriple helical region of the Haemonchus contortus 3A3 collagen gene. This sequence is highly conserved and diagnostic for members of the col-l collagen family, which includes the 3A3 gene. We find that these antisera react predominantly with multiple, high molecular weight (greater than 68 kDa) proteins on Western blots of whole worm extracts. The number and molecular weights of the reacting proteins vary depending upon the developmental stage of the worms analyzed. All of the reacting proteins are collagenase sensitive. The reacting collagens copurify with cuticles and are released from cuticles by reducing agents. In indirect immunofluorescence assays the antisera react only with the broken edges of isolated cuticles, suggesting that the antisera are reacting with an internal cuticle layer. This layer appears to be circular and to extend throughout the length of the worm. The antisera react on Western blots with multiple, high molecular weight collagens of eight other nematodes examined, representing two classes and several orders. These data provide additional support for the notion that the 3A3 collagen gene, and other members of the col-l collagen family, encode cuticle collagens. Collagens with this peptide sequence, presumably other members of the col-l collagen family, appear to be widely distributed in the phylum Nematoda.  相似文献   

16.
1. The mechanical properties of loops of cuticle cut from the abdomens of 5th instar Rhodnius have been investigated. The cuticle shows pronounced viscoelastic behaviour. 2. Stress-relaxation tests show a continuously falling modulus over a wide range of times after the imposition of a strain. 3. Plasticized samples of cuticle show stress-relaxation curves which are shifted along the time axis towards earlier times by up to times 10-3. The modulus at any particular time after the imposition of strain is about 10 times lower than that of the unplasticized cuticle. 4. It is concluded that the mechanical properties of this cuticle are determined, at least for maintained stresses, largely by the matrix material. Chitin microfibrils may act as a reinforcing filler for short-term, rapid stresses. The cuticular macromolecules are probably not extensively cross-linked by primary bonds, though secondary interactions between them are probably important in the viscoelastic properties of the cuticle. 5. Plasticization probably involves a change in either the number or the strength of secondary interactions between the cuticle macromolecules, or both.  相似文献   

17.
The cuticle of Ceramonema carinatum (Chromadorida: Ceramonematidae) is described and illustrated from scanning and transmission electron microscopy. Each of ca. 200 annules is composed of a single ring with eight external flat faces (plates), which are divided by longitudinal ridges formed by pairs of parallel upstanding vanes. Vanes and plates overlap those of the adjacent annules. Longitudinal ridges extend from the cephalic capsule to the tail spike. On the cephalic capsule a simple ridge extends each of the eight ridges to a position just anterior to the amphid. Cuticular plates are formed from the electron-dense cortical layer and contain lacunae filled with fine fibrils. The vanes are denser, with laminations on a central core. In the annular grooves between the plates there is an electron-lucent layer, which it is suggested, by comparison with other nematodes, is the basal layer. An epicuticle overlies the cortical plates, the vanes, and the interannular lucent layer. Cuficular structure is compared with that of other Ceramonematidae and related nematodes.  相似文献   

18.
Summary

The integument of the leech Hirudo medicinalis is mainly composed of a single layer of cuticle-secreting epidermal cells. The cuticle is made up of collagen fibers which support a layer of membrane-bound epicuticular projections.

Shedding of the old cuticle is preceded by the formation of a new cuticle. The epicuticular projections are the first to develop: they originate from the tips of numerous microvilli of the epidermal cells. As soon as it appears, the newly-formed collagen layer is firmly attached to the epidermal cells by numerous hemidesmo-somes, whereas the old cuticle is no longer connected with the epidermal surface. The epidermal cells exhibit marked characteristics of secretory activity during the laying down of the new cuticle.

The observations are discussed in connexion with recent findings of high ecdysteroid levels in leeches at the beginning of the molting cycle.  相似文献   

19.
Terminally differentiating stratified squamous epithelial cells assemble a specialized protective barrier structure on their periphery termed the cornified cell envelope (CE). It is composed of numerous structural proteins that become cross-linked by several transglutaminase enzymes into an insoluble macromolecular assembly. Several proteins are involved in the initial stages of CE assembly, but only certain proteins from a choice of more than 20 different proteins are used in the final stages of CE reinforcement, apparently to meet tissue-specific requirements. In addition, a variable selection of proteins may be upregulated in response to genetic defects of one of the CE proteins or tissue injury, in an effort to maintain an effective barrier. Additionally, in the epidermis and hair fiber cuticle, a layer of lipids is covalently attached to the proteins, which provides essential water barrier properties. Here we describe our current understanding of CE structure, a possible mechanism of its assembly, and various disorders that cause a defective barrier.  相似文献   

20.
Cuticle ultrastructure of Criconemella curvata and C. sphaerocephala females is presented; males were available only in the second species. Ultrathin sections revealed three major zones: cortical, median, and basal. The cortical zone in the females consists of an external and internal layer. In C. curvata the external layer is trilaminate and at each annule it is covered by a multilayered cap. In C. sphaerocephala the trilaminate layer is lacking and the external cortical layer includes an osmophilic coating. In both species the internal layer consists of alternate striated and unstriated sublayers. The median zone is fibrous with a central lacuna and the zone is interrupted between the annules. The basal zone of the cuticle is striated and narrower between each annule. The cuticle of the C. sphaerocephala male is typical of Tylenchida, except under both lateral fields; the striated layer becomes forked at the first incisure and the innermost two prongs of the fork overlap each other, resulting in a continuous striated band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号