首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.  相似文献   

2.
To determine whether the nuclei of early growing stage porcine oocytes can mature to the MII stage, we examined meiotic competence of nuclei that had been fused with enucleated GV oocytes using the nuclear transfer method. In vitro matured oocytes were enucleated and then fused with early growing oocytes (30-40 μm in diameter) from 5 to 7-wk-old piglets using the hemagglutinating virus of Japan (HVJ). Reconstructed oocytes were cultured for 24 h to the MII stage. Although these oocytes extruded the first polar body, they did not contain normal haploid chromosomes, and the spindles were misaligned or absent at the metaphase II (MII) stage. Furthermore, maturation promoting factor (MPF) activity levels were low in oocytes reconstructed with early growing oocytes at metaphase I (MI) and MII. In contrast, mitogen-activated protein kinase (MAPK) activity was detected between the MI and MII stages, although at slightly lower levels. In conclusion, the nuclei of early growing oocytes did not accomplish normal meiotic division in matured oocytes due to misaligned or absent spindle formation.  相似文献   

3.
Single cell comparative genomic hybridization (CGH) was employed to extensively investigate 24 unfertilized or in vitromatured meiosis II oocytes and their corresponding first polar bodies (PBs), to determine how and whether all 23 chromosomes participate in female meiosis I errors and to accurately estimate the aneuploidy rate in the examined cells. Results were obtained for 15 oocytes and 16 PBs, representing 23 eggs (MII oocyte-PB complexes) donated from 15 patients (average age 32.2 years). Abnormalities were detected in ten eggs, giving an overall aneuploidy rate of 43.5%. In all, fourteen anomalies were scored, with the fertilized oocyte being at risk of monosomy in eight cases and at risk of trisomy in six; chromosomes of various sizes participated. CGH was able to give a comprehensive aneuploidy rate, as both absence of chromosomal material and the presence of extra copies were accurately scored. The aneuploidy mechanisms determined were: classical whole univalent non-disjunction; chromatid predivision prior to anaphase I, leading to metaphase II imbalance. There was also evidence of germinal mosaicism for a trisomic cell line. Three patients appeared to be predisposed to meiosis I errors, based on the presence of either multiple abnormalities in one or more of their examined cells, or of the same type of abnormality in all of their cells. Exclusion of these susceptible patients reduces the aneuploidy rate to 20%. Various hypotheses are put forward to explain these observations in order to stimulate research into the complex nature of female meiotic regulation.  相似文献   

4.
Changes in MPF and MAPK activities during meiotic maturation of goat oocytes were investigated. Detection of MPF activity occurred concomitantly with GVBD, increased at MI, decreased during anaphase-telophase I transition, and increased thereafter in MII oocytes. The appearance of MAPK activity was delayed compared to MPF activity. MAPK activity increased after GVBD and persisted during the MI-MII transition. Whether MAPK was implicated in goat oocyte meiotic competence was also investigated by using oocytes from different follicle size categories that arrest at specific stages of the maturation process (GV, GVBD, MI, and MII). Results indicate that the ability of goat oocytes to resume meiosis is not directly related to the presence of Erk2. The ability to phosphorylate MAPK is acquired by the oocyte during follicular growth after the ability to resume meiosis. GVBD-arrested oocytes exhibited a high level of MPF activity after 27 hr of culture. However, 28% of oocytes from this group contained inactive MAPK, and 72% exhibited high MAPK activity. In addition, 29% of GVBD-arrested oocytes contained a residual interphasic network without recruitment of microtubules around the condensed chromosomes; 71% of GVBD-arrested oocytes displayed recruitment of microtubules near the condensed chromosomes and contained asters of microtubules distributed throughout the cytoplasm. These results indicate that oocytes arrested at GVBD were not exactly at the same point in the meiotic cell cycle progression, and suggest that MAPK could be implicated in the regulation of microtubule organization. The data presented here suggest that in goat oocytes, MAPK is not implicated in the early events of meiosis resumption, but rather in post-GVBD events such as spindle formation and MII arrest. © 1996 Wiley-Liss Inc.  相似文献   

5.
Oocytes from LTXBO mice exhibit a delayed entry into anaphase I and frequently enter interphase after the first meiotic division. This unique oocyte model was used to test the hypothesis that protein kinase C (PKC) may regulate the meiosis I-to-meiosis II transition. PKC activity was detected in LTXBO oocytes at prophase I and increased with meiotic maturation, with the highest (P < 0.05) activity observed at late metaphase I (MI). Treatment of late MI-stage oocytes with the PKC inhibitor, bisindolylmaleimide I (BIM), transiently reduced (P < 0.05) M-phase-promoting factor (MPF) activity and promoted (P < 0.05) progression to metaphase II (MII), while mitogen-activated protein kinase (MAPK) activity remained elevated during the MI-to-MII transition. Confocal microscopy analysis of LTXBO oocytes during this transition showed PKC-delta associated with the meiotic spindle and then with the chromosomes at MII. Inhibition of PKC activity also prevented untimely entry into interphase, but only when PKC activity was reduced in oocytes before the progression to MII and thus indicates that the transition into interphase is directly associated with the delayed triggering of anaphase I. Moreover, the defect(s) that initiate activation occur upstream of MAPK, as suppression of PKC activity failed to prevent activation by Mos(tm1Ev)/ Mos(tm1Ev) LTXBO oocytes expressing no detectable MAPK activity. In summary, PKC participates in the regulatory mechanisms that delay entry into anaphase I in LTXBO oocytes, and the disruption promotes untimely entry into interphase. Thus, loss of regulatory control over PKC activity during oocyte maturation disrupts the critical MI-to-MII transition, leading to a precocious exit from meiosis.  相似文献   

6.
Xenopus oocytes are arrested at the G2/prophase boundary of meiosis I and enter meiosis in response to progesterone. A hallmark of meiosis is the absence of DNA replication between the successive cell division phases meiosis I (MI) and meiosis II (MII). After the MI-MII transition, Xenopus eggs are locked in metaphase II by the cytostatic factor (CSF) arrest to prevent parthenogenesis. Early Mitotic Inhibitor 1 (Emi1) maintains CSF arrest by inhibiting the ability of the Anaphase Promoting Complex (APC) to direct the destruction of cyclin B. To investigate whether Emi1 has an earlier role in meiosis, we injected Xenopus oocytes with neutralizing antibodies against Emi1 at G2/prophase and during the MI-MII transition. Progesterone-treated G2/prophase oocytes injected with anti-Emi1 antibody fail to activate Maturation Promoting Factor (MPF), a complex of cdc2/cyclin B, and the MAPK pathway, and do not undergo germinal vesicle breakdown (GVBD). Injection of purified ?90 cyclin B protein or blocking anti-Emi1 antibody with purified Emi1 protein rescues these meiotic processes in Emi1-neutralized oocytes. Acute inhibition of Emi1 in progesterone treated oocytes immediately after GVBD causes rapid loss of cdc2 activity with simultaneous loss of cyclin B levels and inactivation of the MAPK pathway. These oocytes decondense their chromosomes and enter a DNA replication phase instead of progressing to MII. Prior ablation of Cdc20, addition of methyl-ubiquitin, or addition of indestructible ?90 cyclin B rescues the MI-MII transition in Emi1 inhibited oocytes.  相似文献   

7.
Ageing severely affects the chromosome segregation process in human oocytes resulting in aneuploidy, infertility and developmental disorders. A considerable amount of segregation errors in humans are introduced at the second meiotic division. We have here compared the chromosome segregation process in young adult and aged female mice during the second meiotic division. More than half of the oocytes in aged mice displayed chromosome segregation irregularities at anaphase II, resulting in dramatically increased level of aneuploidy in haploid gametes, from 4% in young adult mice to 30% in aged mice. We find that the post‐metaphase II process that efficiently corrects aberrant kinetochore‐microtubule attachments in oocytes in young adult mice is approximately 10‐fold less efficient in aged mice, in particular affecting chromosomes that show small inter‐centromere distances at the metaphase II stage in aged mice. Our results reveal that post‐metaphase II processes have critical impact on age‐dependent aneuploidy in mammalian eggs.  相似文献   

8.
Meiosis in human oocytes is a highly error-prone process with profound effects on germ cell and embryo development. The synaptonemal complex protein 3 (SYCP3) transiently supports the structural organization of the meiotic chromosome axis. Offspring derived from murine Sycp3/ females die in utero as a result of aneuploidy. We studied the nature of the proximal chromosomal defects that give rise to aneuploidy in Sycp3/ oocytes and how these errors evade meiotic quality control mechanisms. We show that DNA double-stranded breaks are inefficiently repaired in Sycp3/ oocytes, thereby generating a temporal spectrum of recombination errors. This is indicated by a strong residual γH2AX labeling retained at late meiotic stages in mutant oocytes and an increased persistence of recombination-related proteins associated with meiotic chromosomes. Although a majority of the mutant oocytes are rapidly eliminated at early postnatal development, a subset with a small number of unfinished crossovers evades the DNA damage checkpoint, resulting in the formation of aneuploid gametes.  相似文献   

9.
Changes in protein kinase C (PKC) activity influence the progression of meiosis; however, the specific function of the various PKC isoforms in female gametes is not known. In the current study, the protein expression and subcellular distribution profile of PKC-delta (PKC-delta), a novel isoform of the PKC family, was determined in mouse oocytes undergoing meiotic maturation and following egg activation. The full-length protein was observed as a doublet (76 and 78 kDa) on Western blot analysis. A smaller (47 kDa) carboxyl-terminal fragment, presumably the truncated catalytic domain of PKC-delta, was also strongly expressed. Both the full-length protein and the catalytic fragment became phosphorylated coincident with the resumption of meiosis and remained phosphorylated throughout metaphase II (MII) arrest. Immunofluorescence staining showed PKC-delta distributed diffusely throughout the cytoplasm of oocytes during maturation and associated with the spindle apparatus during the first meiotic division. Discrete foci of the protein also localized with the chromosomes in some mature eggs. Following the completion of meiosis, PKC-delta became dephosphorylated within 2 h of in vitro fertilization or parthenogenetic activation. The protein also accumulated in the nuclei of early embryos and was phosphorylated during M-phase of the initial mitotic cleavage division. By the two-cell stage, expression of the truncated catalytic fragment was minimal. These data demonstrate that the subcellular distribution and posttranslational modification of PKC-delta is cell cycle dependent, suggesting that its activity and/or function likely vary with the progression of meiosis and egg activation.  相似文献   

10.
We investigated the effects of puromycin on mouse oocyte chromosomes during meiotic maturation in vitro. Puromycin treatment for 6 hr at 100 μg/ml almost completely, but reversibly, suppressed [35S]methionine incorporation into oocyte protein at all stages of maturation tested. Nevertheless, oocytes treated at the germinal vesicle stage underwent germinal vesicle breakdown (GVBD) and chromosome condensation. These oocytes completed nuclear maturation to metaphase II (MII) if the inhibitor was withdrawn. Prolonged (24-hr) treatment, however, caused the chromsomes to degenerate. The chromosomes of oocytes treated shortly after GVBD for 6 hr remained condensed, but the oocytes failed to form a polar body. However, 24-hr treatment caused the chromosomes to decondense to form an interphase nucleus. Oocytes treated near MI for 6 hr gave off a polar body during the treatment, and their chromosomes decondensed to form a nucleus, which remained as long as the treatment was continued. However, if the puromycin was withdrawn, the chromosomes recondensed to a state morphologically similar to that at MII. Thus, the chromosome decondensation induced by protein synthesis inhibition at MI was reversible. Oocytes treated at MII, several hours after first polar body formation, also underwent chromosome decondensation to form a nucleus. In the continuous presence of puromycin, the chromosomes remained decondensed, but neither DNA synthesis nor mitosis occurred. However, following puromycin withdrawal, these occytes synthesised DNA and underwent mitosis. Thus, protein synthesis inhibition at MII, by parthenogenetically activating the oocytes, caused irreversible chromosome decondensation. Based on these observations, we discussed the roles of protein synthesis in the regulation of oocyte chromosome behaviour during meiotic maturation.  相似文献   

11.
Mouse oocytes at different stages of maturation were fused together and the ensuing cell cycle events were analyzed with the objective of identifying checkpoints in meiosis. Fusion of maturing oocytes just undergoing germinal vesicle breakdown (GVBD) induces PCC (premature chromosome condensation) but no spindle formation in immature (GV) partner oocytes. On the other hand, fusion of metaphase I (MI) oocytes containing spindles to GV oocytes induces both PCC and spindle formation in the immature partner. Thus, while molecules required for condensation are present throughout metaphase, those involved in spindle formation are absent in early M-phase. Oocytes cultured for 6 h—early metaphase I (i.e., 2 h before the onset of anaphase I)—and then fused to anaphase-telophase I (A-TI) fusion partners block meiotic progression in the more advanced oocytes and induce chromatin dispersal on the spindle. By contrast, oocytes cultured for 8 h (late MI) before fusion to A-TI partners are driven into anaphase by signals from the more advanced oocytes and thereafter advance in synchrony to telophase I. When early (10 h) or late (12 h) metaphase II oocytes were fused to A-TI partners the signals generated from early MII oocytes block the anaphase to telophase I transition and induce a dispersal of A-TI chromosomes along the spindle. On the other hand, late MII oocytes respond to A-TI signals by exiting from the MII block and undergoing the A-TII transition. Moreover, the oocytes in late MI are not arrested in this stage and progress without any delay through A-TI to MII when fused to metaphase II partners. The signals from the less-developed partner force the MII oocyte through A-TII to MIII. In total, these studies demonstrate that the metaphase period is divided into at least three distinct phases and that a checkpoint in late metaphase controls the progress of meiosis in mammalian oocytes.  相似文献   

12.
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.  相似文献   

13.
Vertebrate oocytes arrest in the second metaphase of meiosis (metaphase II [MII]) by an activity called cytostatic factor (CSF), with aligned chromosomes and stable spindles. Segregation of chromosomes occurs after fertilization. The Mos/.../MAPK (mitogen-activated protein kinases) pathway mediates this MII arrest. Using a two-hybrid screen, we identified a new MAPK partner from a mouse oocyte cDNA library. This protein is unstable during the first meiotic division and accumulates only in MII, where it localizes to the spindle. It is a substrate of the Mos/.../MAPK pathway. The depletion of endogenous RNA coding for this protein by three different means (antisense RNA, double-stranded [ds] RNA, or morpholino oligonucleotides) induces severe spindle defects specific to MII oocytes. Overexpressing the protein from an RNA not targeted by the morpholino rescues spindle destabilization. However, dsRNA has no effect on the first two mitotic divisions. We therefore have discovered a new MAPK substrate involved in maintaining spindle integrity during the CSF arrest of mouse oocytes, called MISS (for MAP kinase-interacting and spindle-stabilizing protein).  相似文献   

14.
Ex ovo omnia—all animals come from eggs—this statement made in 1651 by the English physician William Harvey marks a seminal break with the doctrine that all essential characteristics of offspring are contributed by their fathers, while mothers contribute only a material substrate. More than 360 years later, we now have a comprehensive understanding of how haploid gametes are generated during meiosis to allow the formation of diploid offspring when sperm and egg cells fuse. In most species, immature oocytes are arrested in prophase I and this arrest is maintained for few days (fruit flies) or for decades (humans). After completion of the first meiotic division, most vertebrate eggs arrest again at metaphase of meiosis II. Upon fertilization, this second meiotic arrest point is released and embryos enter highly specialized early embryonic divisions. In this review, we discuss how the standard somatic cell cycle is modulated to meet the specific requirements of different developmental stages. Specifically, we focus on cell cycle regulation in mature vertebrate eggs arrested at metaphase II (MII‐arrest), the first mitotic cell cycle, and early embryonic divisions.  相似文献   

15.
The elevated incidence of aneuploidy in human oocytes warrants study of the molecular mechanisms regulating proper chromosome segregation. The Aurora kinases are a well‐conserved family of serine/threonine kinases that are involved in proper chromosome segregation during mitosis and meiosis. Here we report the expression and localization of all three Aurora kinase homologs, AURKA, AURKB, and AURKC, during meiotic maturation of mouse oocytes. AURKA, the most abundantly expressed homolog, localizes to the spindle poles during meiosis I (MI) and meiosis II (MII), whereas AURKB is concentrated at kinetochores, specifically at metaphase of MI (Met I). The germ cell‐specific homolog, AURKC, is found along the entire length of chromosomes during both meiotic divisions. Maturing oocytes in the presence of the small molecule pan‐Aurora kinase inhibitor, ZM447439 results in defects in meiotic progression and chromosome alignment at both Met I and Met II. Over‐expression of AURKB, but not AURKA or AURKC, rescues the chromosome alignment defect suggesting that AURKB is the primary Aurora kinase responsible for regulating chromosome dynamics during meiosis in mouse oocytes. Mol. Reprod. Dev. 76: 1094–1105, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Mitotic spindles assemble from two centrosomes, which are major microtubule‐organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an “inside‐out” mechanism, ending with establishment of the poles. We used HSET (kinesin‐14) as a tool to shift meiotic spindle assembly toward a mitotic “outside‐in” mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic‐like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique “inside‐out” mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes.  相似文献   

17.
During the haploidization process, it is expected that diploid chromosomes of somatic cells will be reduced to haploid for the generation of artificial gametes. In the present study, we aimed to use enucleated mouse oocytes at the germinal vesicle-stage (G2/M) as recipients for somatic cells that are also synchronized to the G2/M stage for haploidization. The reconstructed oocytes were then induced to undergo meiosis in vitro and observed for their nuclear morphology and microtubule network formation at various expected stages of the meiotic division. Following in vitro maturation, more than half (62/119, 52.1%) of the reconstructed oocytes completed the first round of meiosis-like division, as evidenced by the extrusion of pseudopolar bodies (PBs). However, accelerated PB extrusion, approximately 3-4 h earlier than that by control oocytes occurred. Furthermore, abnormally large pseudo-PBs, as large as four times the normal PB sizes, were observed. During the process of in vitro maturation at both the expected stages of metaphase I (MI) and metaphase II (MII), condensed chromosomes were observed in 38.7% and 55.2% of oocytes, respectively. However, two other types of nuclear configurations were also observed: 1) uneven distribution of chromatin and 2) an interphase-like nucleus, indicating deficiencies in chromosome condensation. Following oocyte activation, more than half (21/33, 63.6%) of the reconstructed oocytes with pseudo-PBs formed separated pseudopronuclei (PN), suggesting formation of functional spindles. The formation of bipolar spindle-like microtubule network at both the expected MI and MII stages during in vitro maturation was confirmed by immunohistochemistry. In summary, this study demonstrated that a high proportion of G2/M somatic nuclei appear to undergo meiosis-like division, in two successive steps, forming a pseudo-PB and two separate pseudo-PN upon in vitro maturation and activation treatment. Moreover, the enucleated geminal vesicle cytoplast retained its capacity for meiotic division following the introduction of a somatic G2/M nucleus.  相似文献   

18.
The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies.  相似文献   

19.
We have previously examined characteristics of maternal chromosomes 21 that exhibited a single recombination on 21q and proposed that certain recombination configurations are risk factors for either meiosis I (MI) or meiosis II (MII) nondisjunction. The primary goal of this analysis was to examine characteristics of maternal chromosomes 21 that exhibited multiple recombinant events on 21q to determine whether additional risk factors or mechanisms are suggested. In order to identify the origin (maternal or paternal) and stage (MI or MII) of the meiotic errors, as well as placement of recombination, we genotyped over 1,500 SNPs on 21q. Our analyses included 785 maternal MI errors, 87 of which exhibited two recombinations on 21q, and 283 maternal MII errors, 81 of which exhibited two recombinations on 21q. Among MI cases, the average location of the distal recombination was proximal to that of normally segregating chromosomes 21 (35.28 vs. 38.86 Mb), a different pattern than that seen for single events and one that suggests an association with genomic features. For MII errors, the most proximal recombination was closer to the centromere than that on normally segregating chromosomes 21 and this proximity was associated with increasing maternal age. This pattern is same as that seen among MII errors that exhibit only one recombination. These findings are important as they help us better understand mechanisms that may underlie both age-related and nonage-related meiotic chromosome mal-segregation.  相似文献   

20.
In vitro-matured metaphase II (MII) oocytes with corresponding first polar bodies (I pb) from two indigenous cattle (Bos taurus) breeds have been investigated to provide specific data upon the incidence of aneuploidy. A total of 165 and 140 in vitro-matured MII oocytes of the Podolian (PO) and Maremmana (MA) breeds, respectively, were analyzed by fluorescence in situ hybridization using Xcen and five chromosome-specific painting probes. Oocytes with unreduced chromosome number were 13.3% and 6.4% in the two breeds, respectively, averaging 10.2%. In the PO, out of 100 MII oocytes + I pb analyzed, two oocytes were nullisomic for chromosome 5 (2.0%) and one disomic for the same chromosome (1.0%). In the MA, out of 100 MII oocytes + I pb, one oocyte was found nullisomic for chromosome 5 (1.0%) and one was disomic for the X chromosome (1.0%). Out of 200 MII oocytes + I pb, the mean rate of aneuploidy (nullisomy + disomy) for the two chromosomes scored was 2.5%, of which 1.5% was due to nullisomy and 1.0% due to disomy. By averaging these data with those previously reported on dairy cattle, the overall incidence of aneuploidy in cattle, as a species, was 2.25%, of which 1.25% was due to nullisomy and 1.0% due to disomy. The results so far achieved indicate similar rates of aneuploidy among the four cattle breeds investigated. Interspecific comparison between cattle (Xcen-5 probes) and pig (Sus scrofa domestica) (1-10 probes) also reveal similar rates. Further studies are needed that use more probes to investigate the interchromosomal effect. Establishing a baseline level of aneuploidy for each species/breed could also be useful for improving the in vitro production of embryos destined to the embryo transfer industry as well as for monitoring future trends of the reproductive health of domestic animals in relation to management errors and/or environmental hazards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号