首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Circular RNAs are abundant,conserved, and associated with ALU repeats   总被引:10,自引:0,他引:10  
Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a “backsplice”) and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression.  相似文献   

3.
4.
In plants, particular micro‐RNAs (miRNAs) induce the production of a class of small interfering RNAs (siRNA) called trans‐acting siRNA (ta‐siRNA) that lead to gene silencing. A single miRNA target is sufficient for the production of ta‐siRNAs, which target can be incorporated into a vector to induce the production of siRNAs, and ultimately gene silencing. The term miRNA‐induced gene silencing (MIGS) has been used to describe such vector systems in Arabidopsis. Several ta‐siRNA loci have been identified in soybean, but, prior to this work, few of the inducing miRNAs have been experimentally validated, much less used to silence genes. Nine ta‐siRNA loci and their respective miRNA targets were identified, and the abundance of the inducing miRNAs varies dramatically in different tissues. The miRNA targets were experimentally verified by silencing a transgenic GFP gene and two endogenous genes in hairy roots and transgenic plants. Small RNAs were produced in patterns consistent with the utilization of the ta‐siRNA pathway. A side‐by‐side experiment demonstrated that MIGS is as effective at inducing gene silencing as traditional hairpin vectors in soybean hairy roots. Soybean plants transformed with MIGS vectors produced siRNAs and silencing was observed in the T1 generation. These results complement previous reports in Arabidopsis by demonstrating that MIGS is an efficient way to produce siRNAs and induce gene silencing in other species, as shown with soybean. The miRNA targets identified here are simple to incorporate into silencing vectors and offer an effective and efficient alternative to other gene silencing strategies.  相似文献   

5.
6.
7.
8.
9.
10.
Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in-vitro studies, several VSRs were proposed to suppress silencing through direct binding of short-interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA-mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo. These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in-vitro binding assays and in-vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.  相似文献   

11.
In Drosophila, three types of endogenous small RNAs—microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)—function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2–Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2–Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA.  相似文献   

12.
RNA silencing-mediated small interfering RNAs (siRNAs) and microRNAs (miRNAs) have diverse natural roles, ranging from regulation of gene expression and heterochromatin formation to genome defense against transposons and viruses. Unlike miRNAs, endogenous siRNAs are generally not conserved between species; consequently, their identification requires experimental approaches. Thus far, endogenous siRNAs have not been reported from rice, which is a model species for monocotyledonous plants. We identified a large set of putative endogenous siRNAs from root, shoot and inflorescence small RNA cDNA libraries of rice. Most of these siRNAs are from intergenic regions, although a substantial proportion (22%) originates from the introns and exons of protein-coding genes. Northern and RT–PCR analysis revealed that the expression of some of the siRNAs is tissue specific or developmental stage specific. A total of 25 transposons and 21 protein-coding genes were predicted to be cis-targets of some of the siRNAs. Based on sequence homology, we also predicted 111 putative trans-targets for 44 of the siRNAs. Interestingly, ~46% of the predicted trans-targets are transposable elements, which suggests that endogenous siRNAs may play an important role in the suppression of transposon proliferation. Using RNA ligase-mediated-5′ rapid amplification of cDNA end assays, we validated three of the predicted targets and provided evidence for both cis- and trans-silencing of target genes by siRNAs-guided mRNA cleavage.  相似文献   

13.
As central components of RNA silencing, small RNAs play diverse and important roles in many biological processes in eukaryotes. Aberrant reduction or elevation in the levels of small RNAs is associated with many developmental and physiological defects. The in vivo levels of small RNAs are precisely regulated through modulating the rates of their biogenesis and turnover. 2′-O-methylation on the 3′ terminal ribose is a major mechanism that increases the stability of small RNAs. The small RNA methyltransferase HUA ENHANCER1 (HEN1) and its homologs methylate microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs (piRNAs) in animals, and siRNAs in Drosophila. 3′ nucleotide addition, especially uridylation, and 3′-5′ exonucleolytic degradation are major mechanisms that turnover small RNAs. Other mechanisms impacting small RNA stability include complementary RNAs, cis-elements in small RNA sequences and RNA-binding proteins. Investigations are ongoing to further understand how small RNA stability impacts their accumulation in vivo in order to improve the utilization of RNA silencing in biotechnology and therapeutic applications.  相似文献   

14.
15.

Background

The siRNA and piRNA pathways have been shown in insects to be essential for regulation of gene expression and defence against exogenous and endogenous genetic elements (viruses and transposable elements). The vast majority of endogenous small RNAs produced by the siRNA and piRNA pathways originate from repetitive or transposable elements (TE). In D. melanogaster, TE-derived endogenous siRNAs and piRNAs are involved in genome surveillance and maintenance of genome integrity. In the medically relevant malaria mosquito Anopheles gambiae TEs constitute 12-16% of the genome size. Genetic variations induced by TE activities are known to shape the genome landscape and to alter the fitness in An. gambiae.

Results

Here, using bioinformatics approaches we analyzed the small RNA data sets from 6 libraries formally reported in a previous study and examined the expression of the mixed germline/somatic siRNAs and piRNAs produced in adult An. gambiae females. We characterized a large population of TE-derived endogenous siRNAs and piRNAs, which constitutes 56-60% of the total siRNA and piRNA reads in the analysed libraries. Moreover, we identified a number of protein coding genes producing gene-specific siRNAs and piRNAs that were generally expressed at much lower levels than the TE-associated small RNAs. Detailed sequence analysis revealed that An. gambiae piRNAs were produced by both “ping-pong” dependent (TE-associated piRNAs) and independent mechanisms (genic piRNAs). Similarly to D. melanogaster, more than 90% of the detected piRNAs were produced from TE-associated clusters in An. gambiae. We also found that biotic stress as blood feeding and infection with Plasmodium parasite, the etiological agent of malaria, modulated the expression levels of the endogenous siRNAs and piRNAs in An. gambiae.

Conclusions

We identified a large and diverse set of the endogenously derived siRNAs and piRNAs that share common and distinct aspects of small RNA expression across insect species, and inferred their impact on TE and gene activity in An. gambiae. The TE-specific small RNAs produced by both the siRNA and piRNA pathways represent an important aspect of genome stability and genetic variation, which might have a strong impact on the evolution of the genome and vector competence in the malaria mosquitoes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1436-1) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
The DEAD-box proteins CYT-19 in Neurospora crassa and Mss116p in Saccharomyces cerevisiae are broadly acting RNA chaperones that function in mitochondria to stimulate group I and group II intron splicing and to activate mRNA translation. Previous studies showed that the S. cerevisiae cytosolic/nuclear DEAD-box protein Ded1p could stimulate group II intron splicing in vitro. Here, we show that Ded1p complements mitochondrial translation and group I and group II intron splicing defects in mss116Δ strains, stimulates the in vitro splicing of group I and group II introns, and functions indistinguishably from CYT-19 to resolve different nonnative secondary and/or tertiary structures in the Tetrahymena thermophila large subunit rRNA-ΔP5abc group I intron. The Escherichia coli DEAD-box protein SrmB also stimulates group I and group II intron splicing in vitro, while the E. coli DEAD-box protein DbpA and the vaccinia virus DExH-box protein NPH-II gave little, if any, group I or group II intron splicing stimulation in vitro or in vivo. The four DEAD-box proteins that stimulate group I and group II intron splicing unwind RNA duplexes by local strand separation and have little or no specificity, as judged by RNA-binding assays and stimulation of their ATPase activity by diverse RNAs. In contrast, DbpA binds group I and group II intron RNAs nonspecifically, but its ATPase activity is activated specifically by a helical segment of E. coli 23S rRNA, and NPH-II unwinds RNAs by directional translocation. The ability of DEAD-box proteins to stimulate group I and group II intron splicing correlates primarily with their RNA-unwinding activity, which, for the protein preparations used here, was greatest for Mss116p, followed by Ded1p, CYT-19, and SrmB. Furthermore, this correlation holds for all group I and group II intron RNAs tested, implying a fundamentally similar mechanism for both types of introns. Our results support the hypothesis that DEAD-box proteins have an inherent ability to function as RNA chaperones by virtue of their distinctive RNA-unwinding mechanism, which enables refolding of localized RNA regions or structures without globally disrupting RNA structure.  相似文献   

19.
20.
Plants respond to virus infections by activation of RNA-based silencing, which limits infection at both the single-cell and system levels. Viruses encode RNA silencing suppressor proteins that interfere with this response. Wild-type Arabidopsis thaliana is immune to silencing suppressor (HC-Pro)-deficient Turnip mosaic virus, but immunity was lost in the absence of DICER-LIKE proteins DCL4 and DCL2. Systematic analysis of susceptibility and small RNA formation in Arabidopsis mutants lacking combinations of RNA-dependent RNA polymerase (RDR) and DCL proteins revealed that the vast majority of virus-derived small interfering RNAs (siRNAs) were dependent on DCL4 and RDR1, although full antiviral defense also required DCL2 and RDR6. Among the DCLs, DCL4 was sufficient for antiviral silencing in inoculated leaves, but DCL2 and DCL4 were both involved in silencing in systemic tissues (inflorescences). Basal levels of antiviral RNA silencing and siRNA biogenesis were detected in mutants lacking RDR1, RDR2, and RDR6, indicating an alternate route to form double-stranded RNA that does not depend on the three previously characterized RDR proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号