首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lemongrass is a widely used herb as a food flavoring, as a perfume, and for its analgesic and anti-inflammatory purposes; however, the molecular mechanisms of these effects have not been elucidated. Previously, we identified carvacrol from the essential oil of thyme as a suppressor of cyclooxygenase (COX)-2, a key enzyme for prostaglandin synthesis, and also an activator of peroxisome proliferator-activated receptor (PPAR), a molecular target for “lifestyle-related” diseases. In this study, we evaluated the essential oil of lemongrass using our established assays for COX-2 and PPARs. We found that COX-2 promoter activity was suppressed by lemongrass oil in cell-based transfection assays, and we identified citral as a major component in the suppression of COX-2 expression and as an activator of PPARα and γ. PPARγ-dependent suppression of COX-2 promoter activity was observed in response to citral treatment. In human macrophage-like U937 cells, citral suppressed both LPS-induced COX-2 mRNA and protein expression, dose-dependently. Moreover, citral induced the mRNA expression of the PPARα-responsive carnitine palmitoyltransferase 1 gene and the PPARγ-responsive fatty acid binding protein 4 gene, suggesting that citral activates PPARα and γ, and regulates COX-2 expression. These results are important for understanding the anti-inflammatory and anti-lifestyle-related disease properties of lemongrass.  相似文献   

2.
3.
Periodontal diseases are initiated primarily by Gram-negative, tooth-associated microbial biofilms that elicit a host response that causes osseous and soft tissue destruction. Carvedilol is a β-blocker used as a multifunctional neurohormonal antagonist that has been shown to act not only as an anti-oxidant but also as an anti-inflammatory drug. This study evaluated whether Carvedilol exerted a protective role against ligature-induced periodontitis in a rat model and defined how Carvedilol affected metalloproteinases and RANKL/RANK/OPG expression in the context of bone remodeling. Rats were randomly divided into 5 groups (n = 10/group): (1) non-ligated (NL), (2) ligature-only (LO), and (3) ligature plus Carvedilol (1, 5 or 10 mg/kg daily for 10 days). Periodontal tissue was analyzed for histopathlogy and using immunohistochemical analysis characterized the expression profiles of MMP-2, MMP-9, COX-2, and RANKL/RANK/OPG and determined the presence of IL-1β, IL-10 and TNF-α, myeloperoxidase (MPO), malonaldehyde (MDA) and, glutathione (GSH). MPO activity in the group with periodontal disease was significantly increased compared to the control group (p<0.05). Rats treated with 10 mg/kg Carvedilol presented with significantly reduced MPO and MDA concentrations (p<0.05) in addition to presenting with reduced levels of the pro-inflammatory cytokines IL-1 β and TNF-α (p<0.05). IL-10 levels in Carvedilol-treated rats remained unaltered. Immunohistochemical analysis demonstrated reduced expression of MMP-2, MMP-9, RANK, RANKL, COX-2, and OPG in rats treated with 10 mg/kg Carvedilol. This study demonstrated that Carvedilol affected bone formation/destruction and anti-inflammatory activity in a rat model of periodontitis.  相似文献   

4.
5.
Rajanbabu V  Chen JY 《Peptides》2011,32(2):333-341
The antimicrobial and immunomodulatory functions of the antimicrobial peptide, tilapia hepcidin (TH)2-3, were previously studied. Herein, we report the differential modulation of protein kinase C (PKC)-associated proteins by TH2-3, and the PKC activator, phorbol 12-myristate 13-acetate (PMA), in RAW264.7 macrophages. Treatment with TH2-3 at 40 or 80 μg/ml did not affect the cell morphology, but TH2-3 at 120 μg/ml produced morphological changes similar to those after treatment with PMA in RAW264.7 cells. The coexistence of the PKC inhibitor, Ro-31-8220, prevented morphological changes induced by either PMA or 120 μg/ml TH2-3 in RAW264.7 cells. Since PMA is known to induce expression of the proinflammatory cytokine, tumor necrosis factor (TNF)-α, activation of the TNF-α promoter in response to TH2-3 and PMA treatments in lipopolysaccharide (LPS)-stimulated cells was compared. In LPS-stimulated RAW264.7 cells, TNF-α promoter activity was significantly suppressed by TH2-3, but not by PMA. In addition, PMA activated prostaglandin synthase-associated cyclooxygenase (COX)-2 proteins on the cell surface, while the presence of TH2-3 inhibited its expression. Western blotting demonstrated that the expressions of PKC-μ, phosphorylated (p)-PKCμ at serine (S)-744, and p-PKCδ were activated by PMA, but were suppressed by TH2-3. In addition, p-PKC at S-916 was activated by TH2-3 and inhibited by PMA. In conclusion, the differential regulation of PKC isoforms by PMA and TH2-3 may influence morphological changes and regulation of TNF-α in RAW264.7 cells.  相似文献   

6.
Ongoing efforts to search for naturally occurring, bioactive substances for the amelioration of arthritis have led to the discovery of natural products with substantial bioactive properties. The seahorse (Hippocampus kuda Bleeler), a telelost fish, is one source of known beneficial products, yet has not been utilized for arthritis research. In the present work, we have purified and characterized a bioactive peptide from seahorse hydrolysis. Among the hydrolysates tested, pronase E-derived hydrolysate exhibited the highest alkaline phosphatase (ALP) activity, a phenotype marker of osteoblast and chondrocyte differentiation. After its separation from the hydrolysate by several purification steps, the peptide responsible for the ALP activity was isolated and its sequence was identified as LEDPFDKDDWDNWK (1821 Da). We have shown that the isolated peptide induces differentiation of osteoblastic MG-63 and chondrocytic SW-1353 cells by measuring ALP activity, mineralization and collagen synthesis. Our results indicate that the peptide acts during early to late stages of differentiation in MG-63 and SW-1353 cells. We also assessed the concentration dependence of the peptide's inhibition of MMP (-1, -3 and -13), iNOS and COX-2 expression after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a common form of phorbol ester. The peptide also inhibited NO production in MG-63 and SW-1353 cells. To elucidate the mechanisms by which the peptide acted, we examined its effects on TPA-induced MAPKs/NF-κB activation and determined that the peptide treatment significantly reduced p38 kinase/NF-κB in MG-63 cells and MAPKs/NF-κB in SW-1353 cells.  相似文献   

7.
8.
Methotrexate (MTX) is a pro-oxidant compound that depletes dihydrofolate pools and is widely used in the treatment of leukaemia and other malignancies. The efficacy of methotrexate is often limited by mucositis and intestinal injury, which are major causes of morbidity in children and adults. The aim of this study was to evaluate the effect of olmesartan (OLM), an angiotensin II receptor antagonist, on an Intestinal Mucositis Model (IMM) induced by MTX in Wistar rats. IMM was induced via intraperitoneal (i.p.) administration of MTX (7 mg/kg) for three consecutive days. The animals were pre-treated with oral OLM at 0.5, 1 or 5 mg/kg or with vehicle 30 min prior to exposure to MTX. Small intestinal homogenates were assayed for levels of the IL-1β, IL-10 and TNF-α cytokines, malondialdehyde and myeloperoxidase activity. Additionally, immunohistochemical analyses of MMP-2, MMP-9, COX-2, RANK/RANKL and SOCS-1 and confocal microscopy analysis of SOCS-1 expression were performed. Treatment with MTX + OLM (5 mg/kg) resulted in a reduction of mucosal inflammatory infiltration, ulcerations, vasodilatation and haemorrhagic areas (p<0.05) as well as reduced concentrations of MPO (p<0.001) and the pro-inflammatory cytokines IL-1β (p<0.001) and TNF-a (p<0.01), and increase anti-inflammatory cytocine IL-10 (p<0.05). Additionally, the combined treatment reduced expression of MMP-2, MMP-9, COX-2, RANK and RANKL(p<0.05) and increased cytoplasmic expression of SOCS-1 (p<0.05). Our findings confirm the involvement of OLM in reducing the inflammatory response through increased immunosuppressive signalling in an IMM. We also suggest that the beneficial effect of olmesartan treatment is specifically exerted during the damage through blocking inflammatory cytocines.  相似文献   

9.
Abstract

Cyclic imides containing 3-benzenesulfonamide, oxime, and β-phenylalanine derivatives were synthesised and evaluated to elucidate their in vivo anti-inflammatory and ulcerogenic activity and in vitro cytotoxic effects. Most active anti-inflammatory agents were subjected to in vitro COX-1/2 inhibition assay. 3-Benzenesulfonamides (2–4, and 9), oximes (11–13), and β-phenylalanine derivative (18) showed potential anti-inflammatory activities with 71.2–82.9% oedema inhibition relative to celecoxib and diclofenac (85.6 and 83.4%, respectively). Most active cyclic imides 4, 9, 12, 13, and 18 possessed ED50 of 35.4–45.3?mg kg?1 relative to that of celecoxib (34.1?mg kg?1). For the cytotoxic evaluation, the selected derivatives 2–6 and 8 exhibited weak positive cytotoxic effects (PCE = 2/59–5/59) at 10?μM compared to the standard drug, imatinib (PCE = 20/59). Cyclic imides bearing 3-benzenesulfonamide (2–5, and 9), acetophenone oxime (11–14, 18, and 19) exhibited high selectivity against COX-2 with SI > 55.6–333.3 relative to that for celecoxib [SI > 387.6]. β-Phenylalanine derivatives 21–24 and 28 were non-selective towards COX-1/2 isozymes as indicated by their SI of 0.46–0.68.  相似文献   

10.
11.
12.
Caesalpinia digyna (Rottl.) (Family: Fabaceae) is well known for its numerous medicinal values against several human disorders including fever, senile pruritis, diarrhea, tuberculosis, tonic disorder, diabetes, etc. The current study is intended to investigate the in vivo antipyretic activity of the methanol extract of C. digyna leaves (MECD) and its carbon-tetrachloride (CTCD) and butanol fraction (BTCD). Besides, in silico molecular docking and ADME/T profiling of the selective identified bioactive compounds of C. digyna has been also studied to validate the experimental outcomes and establish a better insight into the possible receptor-ligand interaction affinity. In vivo antipyretic activity of MECD, CTCD and BTCD were evaluated by employing yeast induced pyrexia technique in mice model and in silico analysis of the identified compounds of C. digyna has been implemented using PyRx autodock vina, Discovery Studio 2020, UCSF Chimera software and ADME/T online tools. MECD and BTCD unveiled significant antipyretic activity in dose dependent manner whereas, CTCD failed to exhibit significant antipyretic activity. Comparing to other test sample, MECD (400 mg/kg; b.w) (p < 0.001) displayed maximum inhibition of pyrexia. In molecular docking approach, docking score between −6.60 to −10.20 kcal/mol have been revealed. Besides, in ADME/T analysis, no compound violated the lipiniski’s 5 rules and displayed any toxicity. Biological and computational approaches ascertain the ethno-botanical use of C. digyna as a good agent against pyrexia and the compounds of C. digyna are primarily proved as safe. Hereafter, further analysis is suggested to validate this research.  相似文献   

13.
环氧化酶(COX-2)是体内前列腺素(PG)合成过程中重要的限速酶,它在正常组织中表达甚少,但在肿瘤和炎性细胞中表达较多,近年来的研究表明COX-2的过表达与肿瘤的发生,发展有关,使COX-2成为肿瘤研究的新热点,但COX-2在实体肿瘤中的研究较多而与血液恶性疾病之间关系国内报道较少,现就COX-2的研究进展以及在血液恶性肿瘤中的作用做一综述。  相似文献   

14.
15.
Ye Z  Wang N  Xia P  Wang E  Yuan Y  Guo Q 《Neurochemical research》2012,37(2):321-329
Parecoxib is a recently described novel COX-2 inhibitor whose functional significance and neuroprotective mechanisms remain elusive. Therefore, in this study, we aimed to investigate whether delayed administration of parecoxib inhibited mitochondria-mediated neuronal apoptosis induced by ischemic reperfusion injury via phosphorylating Akt and its downstream target protein, glycogen synthase kinase 3β (GSK-3β). Adult male Sprague–Dawley rats were administered parecoxib (10 or 30 mg kg−1, IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. Cerebral infarct volume, apoptotic neuron, caspase-3 immunoreactivity and the protein expression of p-Akt, p-GSK-3β and Cytochrome C in cerebral ischemic cortex were evaluated at 96 h after reperfusion. Parecoxib significantly diminished infarct volume and attenuated neuron apoptosis in a dose-independent manner, compared with MCAO group alone. Increased p-Akt and p-GSK-3β was observed in the ischemic penumbra of parecoxib group after stroke. Moreover, parecoxib also reduced the release of Cytochrome C from mitochondrial into cytosol and attenuated the caspase-3 immunoreactivity in the penumbra. Taken together, these results suggested that parecoxib ameliorated postischemic mitochondria-mediated neuronal apoptosis induced by focal cerebral ischemia in rats and this neuroprotective potential is involved in phosphorylation of Akt and GSK-3β.  相似文献   

16.
A series of novel 4-O-methylhonokiol analogs were synthesized in light of revealing structure-activity relationship for inhibitory effect of COX-2 enzyme. The key strategy of the molecular design was oriented towards modification of the potential metabolic soft spots (e.g., phenol and olefin) or by altering the polar surface area via incorporating heterocycles such as isoxazole and triazole. Most of all exhibited the inhibitory effects on COX-2 and PGF(1) production but not macrophage NO production. Especially, aryl carbamates 10 and 11 exhibited more potent inhibitory activity against COX-2 and PGF(1) production.  相似文献   

17.
A group of tetrazole bearing compounds were synthesized and evaluated for their in vitro cyclooxygenase (COX) isozymes (COX-1/COX-2) inhibitory activity, in vitro anti-inflammatory activity through measuring levels of expression of IL-6 and TNF-α and antimicrobial activity. Cyclization of pyridine derivative 5b was confirmed using 2D NMR such as NOESY and HMBC experiments. Within the synthesized compounds, compound 7c was identified as effective and selective COX-2 inhibitors (COX-2 IC50 = 0.23 uM; COX-2 selectivity index = 16.91). Moreover 7c was the most effective derivative on TNF-α (37.6 pg/ml). While, the most active compound on IL-6 was isoxazole derivative 6 (42.8 pg/ml). Dual inhibitory activity on both IL-6 and TNF-α was exhibited by compounds 2 and 3 (IL-6 = 47.5 and 82.7 pg/ml, respectively) and (TNF-α = 31.7 and 33.8 pg/ml, sequentially).Additionally, compound 7a, showed broad spectrum antimicrobial activity against Gram positive cocci, Gram positive rods and yeast fungus (inhibition zone = 20 and 19 mm). None of the test compounds exhibited activity against Gram negative rods. Compounds 3 and 7c exhibited good antifungal activity at MIC equal to 64.5 µg/ml. While compound 6 showed antibacterial activities against Micrococcus lysodicticus and Bacillus subtilis at MIC = 32.25 and 64.5 µg/ml, respectively.Computational analysis was used to predict molecular properties and bioactivity of the target compounds. To confirm the mode of action of the synthesized compounds as anti-inflammatory agents, molecular docking was done. Appreciable binding interactions were observed for compound 7c containing COX-2 pharmacophore (SO2NH2), with binding energy −10.6652 Kcal/mol, forming two hydrogen bonding interactions with His90 and Tyr355 amino acids. It was fully fitted within COX-2 active site having the highest COX-2 selectivity index between all the test compounds (S.I. = 16.91).  相似文献   

18.
19.
环氧化酶-2(cyclooxygenase-2,COX-2)为一种在正常组织中较少表达的诱导酶,而当细胞受到炎症刺激时大量表达。由于COX-2可以快速应答一系列促炎介质和细胞因子,因此长久以来一直被认为在炎症发生的病理过程中扮演重要角色。然而COX-2通过产生不同的前列腺素不仅具有促炎作用,还可发挥抗炎促消退功能,如通过产生15ΔPGJ2与NF-κB、STAT3、AP-1等促炎转录因子相互作用发挥拮抗炎症和氧化应激的保护功能。考虑到减少COX-2表达导致的负面影响的同时也损害了它的积极作用,我们认为抑制COX-2表达以抑制炎症的这种治疗方案有待商榷。本文概述了COX-2/前列腺素在炎症中的积极作用,并期望通过进一步理解COX-2的双重作用,来探索发展炎症疾病的新型治疗方案。  相似文献   

20.
环氧合酶-2(COX-2)是催化花生四烯酸合成前列腺素的关键限速酶,呈诱导性表达在病变组织中,参与各种损伤性化学、肿瘤、炎症、发热、凝血、疼痛等病理过程。近年来大量研究表明,COX-2在胃癌的发生发展及转移中起着关键性作用,COX-2在肿瘤增殖、血管生成、侵袭转移及抑制细胞凋亡中的作用已经受到医学界的关注,诸多研究表明选择性COX-2抑制剂不仅能够抑制胃癌细胞的增殖和促进癌细胞凋亡,还能降低胃癌细胞的侵袭转移能力,有助于胃癌的防治。随着COX-2与胃癌关系研究的深入,作为胃癌防治靶点之一的COX-2,已经成为胃癌治疗的热点。本文主要讨论COX-2及其抑制剂在胃癌的中作用及研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号