共查询到20条相似文献,搜索用时 0 毫秒
1.
Two guard cell‐preferential MAPKs,MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells
M. A. Salam F. Jammes M. A. Hossain W. Ye Y. Nakamura I. C. Mori J. M. Kwak Y. Murata 《Plant biology (Stuttgart, Germany)》2013,15(3):436-442
We report that two mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate abscisic acid (ABA)‐induced stomatal closure in Arabidopsis thaliana. Yeast elicitor (YEL) induced stomatal closure accompanied by intracellular reactive oxygen species (ROS) accumulation and cytosolic free calcium concentration ([Ca2+]cyt) oscillation. In this study, we examined whether these two MAP kinases are involved in YEL‐induced stomatal closure using MAPKK inhibitors, PD98059 and U0126, and MAPK mutants, mpk9, mpk12 and mpk9 mpk12. Both PD98059 and U0126 inhibited YEL‐induced stomatal closure. YEL induced stomatal closure in the mpk9 and mpk12 mutants but not in the mpk9 mpk12 mutant, suggesting that a MAPK cascade involving MPK9 and MPK12 functions in guard cell YEL signalling. However, YEL induced extracellular ROS production, intracellular ROS accumulation and cytosolic alkalisation in the mpk9, mpk12 and mpk9 mpk12 mutants. YEL induced [Ca2+]cyt oscillations in both wild type and mpk9 mpk12 mutant. These results suggest that MPK9 and MPK12 function redundantly downstream of extracellular ROS production, intracellular ROS accumulation, cytosolic alkalisation and [Ca2+]cyt oscillation in YEL‐induced stomatal closure in Arabidopsis guard cells and are shared with ABA signalling. 相似文献
2.
Md. Atiqur Rahman Khokon Mohammad Abdus Salam Fabien Jammes Wenxiu Ye Mohammad Anowar Hossain Eiji Okuma 《Bioscience, biotechnology, and biochemistry》2017,81(7):1394-1400
Salicylic acid (SA) induces stomatal closure sharing several components with abscisic acid (ABA) and methyl jasmonate (MeJA) signaling. We have previously shown that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signaling and MeJA signaling in Arabidopsis thaliana. In this study, we examined whether these two MAPKs are involved in SA-induced stomatal closure using genetic mutants and a pharmacological, MAPKK inhibitor. Salicylic acid induced stomatal closure in mpk9 and mpk12 single mutants but not in mpk9 mpk12 double mutants. The MAPKK inhibitor PD98059 inhibited SA-induced stomatal closure in wild-type plants. Salicylic acid induced extracellular reactive oxygen species (ROS) production, intracellular ROS accumulation, and cytosolic alkalization in the mpk9, mpk12, and mpk9 mpk12 mutants. Moreover, SA-activated S-type anion channels in guard cells of wild-type plants but not in guard cells of mpk9 mpk12 double mutants. These results imply that MPK9 and MPK12 are positive regulators of SA signaling in Arabidopsis guard cells. 相似文献
3.
4.
Sona Pandey Xi-Qing Wang Sylvie A. Coursol Sarah M. Assmann 《The New phytologist》2002,153(3):517-526
5.
6.
Kim SH Woo DH Kim JM Lee SY Chung WS Moon YH 《Biochemical and biophysical research communications》2011,(1):150-154
Plants have developed disparate regulatory pathways to adapt to environmental stresses. In this study, we identified MKK4 as an important mediator of plant response to osmotic stress. mkk4 mutants were more sensitive to high salt concentration than WT plants, exhibiting higher water-loss rates under dehydration conditions and additionally accumulating high levels of ROS. In contrast, MKK4-overexpressing transgenic plants showed tolerance to high salt as well as lower water-loss rates under dehydration conditions. In-gel kinase assays revealed that MKK4 regulates the activity of MPK3 upon NaCl exposure. Semi-quantitative RT-PCR analysis showed that expression of NCED3 and RD29A was lower and higher in mkk4 mutants and MKK4-overexpressing transgenic plants, respectively. Taken together, our results suggest that MKK4 is involved in the osmotic-stress response via its regulation of MPK3 activity. 相似文献
7.
Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide 总被引:2,自引:0,他引:2
MAP kinases have been linked to guard cell signalling. Arabidopsis thaliana MAP Kinase 3 (MPK3) is known to be activated by abscisic acid (ABA) and hydrogen peroxide (H(2)O(2)), which also control stomatal movements. We therefore studied the possible role of MPK3 in guard cell signalling through guard cell-specific antisense inhibition of MPK3 expression. Such transgenic plants contained reduced levels of MPK3 mRNA in the guard cells and displayed partial insensitivity to ABA in inhibition of stomatal opening, but responded normally to this hormone in stomatal closure. However, ABA-induced stomatal closure was reduced compared with controls when cytoplasmic alkalinization was prevented with sodium butyrate. MPK3 antisense plants were less sensitive to exogenous H(2)O(2), both in inhibition of stomatal opening and in promotion of stomatal closure, thus MPK3 is required for the signalling of this compound. ABA-induced H(2)O(2) synthesis was normal in these plants, indicating that MPK3 probably acts in signalling downstream of H(2)O(2). These results provide clear evidence for the important role of MPK3 in the perception of ABA and H(2)O(2) in guard cells. 相似文献
8.
Daisuke Tsugama 《Biochemical and biophysical research communications》2012,426(4):626-629
Mitogen-activated protein kinases (MPKs) have roles in regulating developmental processes and responses to various stimuli in plants. Activations of some MPKs are necessary for proper responses to hyperosmolarity and to a stress-related phytohormone, abscisic acid (ABA). However, there is no direct evidence that MPK activations are regulated by drought and rehydration. Here we show that the activation state of one of the Arabidopsis MPKs, MPK6, is directly regulated by drought and rehydration. An immunoblot analysis using an anti-active MPK antibody detected drought-induced activation and rehydration-induced inactivation of MPK6. MPK6 was activated by drought even in an ABA-deficient mutant, aba2-4. In addition, exogenously added ABA failed to suppress the rehydration-dependent inactivation of MPK6. Under drought conditions, elevated levels of reactive oxygen species (ROS), which are known elicitors of MPK6 activation, were detected in both wild type and an MPK6-deficient mutant, mpk6-4. These results suggest that ROS, but not ABA, induces MPK6 activation as an upstream signal under drought conditions. 相似文献
9.
ABA Transport and Plant Water Stress Responses 总被引:1,自引:0,他引:1
10.
11.
12.
The genetic regulation of stomatal movement mainly depends on an efficient control system of gene expression, and guard cell-specific
promoter is becoming the best choice. Here we combined the dehydration responsive element (DRE) with guard cell specific element
(GCSE) to construct a novel promoter, DGP1. Histochemical assays in transgenic tobacco carryingβ-glucuronidase (gus) gene fused to DGP1 demonstrated that GUS activity was found to be highly inducible by drought treatment and specifically
restricted to guard cells. No GUS activity was detected in roots, stems or flowers after treatment. Further quantitative analysis
showed that GUS activity in the epidermal strips was apparently induced by dehydration and dramatically increased with the
elongation of treatment. The GUS activity after 8 h treatment was 179 times that of those without treatment. Although GUS
activity in roots, stems or mesophyll increased after treatment, no great changes were observed. These results suggested that
DGP1 could drive target gene expressed in guard cells when plant is subjected to drought stress. And this gets us prepared
to control opening and closing of stomata through plant gene engineering. 相似文献
13.
Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development 总被引:2,自引:0,他引:2
Loss-of-function, dominant-negative, and change-of-function genetic approaches were used to investigate the role played by the Arabidopsis mitogen-activated protein (MAP) kinase MPK6 throughout development. Plants homozygous for T-DNA null alleles of MPK6 displayed reduced male fertility and abnormal anther development. In addition, a portion of the seed produced by mpk6 plants was found to contain embryos that had burst out of their seed coats. To address potential functional redundancy, a dominant-negative version of MPK6 was constructed by changing the TEY activation loop motif to the amino acid sequence AEF. Plants expressing MPK6AEF via the MPK6 native promoter were found to produce excessive stomata, consistent with the recently described role of MPK6 in stomatal patterning. A novel floral phenotype characterized by abnormal sepal development was also observed in MPK6AEF lines. The gene expression pattern of the MPK6 native promoter was determined using a YFP-MPK6 fusion construct, and expression was observed throughout most plant tissues, consistent with a role for MPK6 in multiple developmental processes. The YFP-MPK6 construct was found to rescue the fertility phenotype of mpk6 null alleles, indicating that the fusion protein retains its biological activity. It was also observed, however, that plants expressing YFP-MPK6 displayed reduced apical dominance and a shortening of inflorescence internodes. These results suggest that the YFP tag modifies the activity of MPK6 in a manner that affects inflorescence development but not anther development. Taken together, the present results indicate that MPK6 is involved in the regulation of multiple aspects of plant development. 相似文献
14.
水分胁迫下蚕豆(Vicia faba L.)气孔关闭与叶片细胞中ABA区隔化与再分配的关系 总被引:1,自引:0,他引:1
应用胶体金免疫电镜定位技术研究水分胁迫下叶片ABA的再分配。表明:水分胁迫初期蚕豆叶肉细胞中ABA的量与对照相比无明显变化,但水分胁迫可导致表皮细胞质外体ABA含量明显增加;保卫细胞在水分胁迫前即含有大量ABA;ABA主要分布在叶绿体和细胞核,细胞的腹壁及相邻外壁和内壁也有大量ABA存在,但背壁ABA的量很少;气孔完全开放时背壁ABA含量更少,当水分胁迫导致气孔关闭时,保卫细胞背壁ABA含量大增,说明气孔运动与保卫细胞中ABA的区隔化与再分配密切相关。 相似文献
15.
16.
Ubiquitin, hormones and biotic stress in plants 总被引:21,自引:0,他引:21
17.
Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells 总被引:2,自引:0,他引:2
Abstract Vicia faba plants grown under water deficit were found to have guard cells considerably smaller than those of plants grown under well-watered conditions. Stomala of plants adapted to drought conditions have been observed in past studies to maintain opening at plant water potentials lower than those of plants not so adapted. By employing the geometric interpretation of the mechanical advantage (Wu, Sharpe & Spence, 1985), an anatomical/mechanical basis was found that helps explain how such opening in drought conditions can occur. The geometry and resulting mechanical properties of small stomata, in contrast to larger stomata, give them the capability of opening or maintaining open pores with lower guard cell turgor pressures, relative to the turgor of the surrounding epidermal cells. 相似文献
18.
19.
20.
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling. 相似文献