首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roles of different phytochromes in Arabidopsis photomorphogenesis   总被引:18,自引:2,他引:18  
The red/far-red light-absorbing phytochromes play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. Higher plants possess multiple, discrete phytochromes, the apoproteins of which are the products of a family of divergent (PHY) genes. Arabidopsis thaliana has at least five PHY genes, encoding the apoproteins of phytochromes A-E. Through the analysis of mutants that are deficient in phytochrome A or B and the corresponding double mutant, it is becoming clear that these phytochromes perform both discrete and overlapping roles throughout plant development. Through analysis of the phyA phyB double mutant, it has been possible to define several responses that are mediated by other members of the phytochrome family. This article reviews some of the recent progress in the study of phytochrome-deficient mutants of the model plant Arabidopsis thaliana.  相似文献   

2.
3.
The Arabidopsis phyB, phyD, and phyE phytochromes regulate plant developmental and growth responses to continuous red light (R) and to the ratio of R to far-red (FR) light. The activities of these three photoreceptors in the control of seedling growth have been compared using a transgenic assay based upon induction of R-hypersensitivity of hypocotyl elongation by overexpression of the apoproteins from the 35S promoter. 35S-phyB, 35S-phyD, and 35S-phyE lines expressing similar levels of the respective phytochromes were isolated. Under pulses of R, phyB is very active in inducing a dwarf hypocotyl phenotype, whereas phyD and phyE are inactive. Under high-fluence continuous R, phyD shows a gain in activity whereas phyE does not. These results demonstrate significant differences in the inherent regulatory activities of these receptor apoproteins. To localize the sequence determinants of these functional differences, chimeric proteins were constructed by shuffling amino-terminal, central, and carboxy-terminal regions of phyB and phyD. Overexpression analysis of the phyB/D chimeras shows that it is the central region of these proteins that is most critical in determining their respective activities.  相似文献   

4.
5.
Gyrodinium dorsum Kofoid responds photophobically to flashes of blue light. The photophobic response consists of a cessation of movement (stop-response). Without background light and after a flash fluence above 10 J m−2, 75–85% of the cells show a stop-response, while only 50% of the cells show this response at 5 J m−2. With a flash fluence of 5 J m−2, background light of different wavelengths either increases (614 nm. 5.5–18.2 μmol m−2 s−1) or decreases (700 nm, 18.4–36.0 μmol m−2 s−1) the stop-response. Two hypotheses for the mechanism of the modulation by background light of the photophobic response are discussed: an effect of light on the balance of the photosynthetic system (PS I/PS II) or an effect on a phytochrome-like pigment (Pr/Pfr). This study supports the idea that a phytochrome-like pigment works in combination with a blue light-absorbing pigment. It was also found that cells of Gyrodinium dorsum cultured in red light (39.8 μmol m−2) had a higher absorption in the red region of the absorption spectra than those cultured in white light (92.7 μmol m−2).  相似文献   

6.
7.
Single, double, triple and quadruple mutants of phyA, phyB, cry1 and cry2 were exposed to different sunlight irradiances and photoperiods to investigate the roll played by phytochrome A, phytochrome B, cryptochrome 1 and cryptochrome 2 during de-etiolation of Arabidopsis thaliana seedlings under natural radiation. Even the quadruple mutant retained some hypocotyl-growth inhibition by sunlight. Hypocotyl length was strongly affected by interactions among photoreceptors. Double phyA phyB, phyA cry1, and cry1 cry2 mutants were taller than expected from the additive action of single mutations. Some of these redundant interactions required the presence of phytochromes A and/or B. Interactions among photoreceptors resulted in a 44% reduction of the response to irradiance and a 70% reduction of the response to photoperiod. The complex network of interactions among photoreceptors is proposed to buffer de-etiolation against changes in irradiance and photoperiod, i.e light fluctuations not related to the positions of the shoot above or below soil level  相似文献   

8.
Flowering response and plant form of photomorphogenic mutants (hy1, hy2, hy3, hy4 and hy5) of Arabidopsis thaliana (L.), a long-day plant, were examined in long and short days. There were only slight differences among genotypes including Landsberg wild type with respect to the flowering time under long days. The effect of 1 h light-(night)-breaks of far-red, red, blue and white light given in the middle of the dark period of plants grown under short days, was studied. Effects of far-red light applied at the end or the beginning of the main photoperiod on flowering and plant form were also examined. The light-breaks with all the above mentioned light qualities promoted floral initiation of all the genotypes including the wild type in terms of both the flowering time and the number of rosette leaves. In general, far-red light was most effective. It is possible to classify the hy-mutants into 3 groups by their responses to light-breaks under short day conditions: (a) Mutants hy2 and hy3, which have a reduced number of rosette leaves, and flower early. Red light is as effective as far-red light. The wavelength of light-breaks is relatively unimportant for flowering response. (b) Mutants hy4, hy5 and Landsberg wild type, which have a greater number of rosette leaves, and flower relatively late. The effectiveness of light-breaks is in the following order, far-red, blue, and red light, which is in reverse order to the transformation of phytochrome to the Pfr form. (c) Mutant hy1, which behaves anomalously with respect to relations between flowering time and number of rosette leaves; late flowering with reduced number of rosette leaves. Red, blue and far-red light are effective, but white light is ineffective for reducing the number of rosette leaves. When far-red light was given in the middle of the night or at the end of the main photoperiod, it markedly reduced the number of rosette leaves compared to those grown under short days for all the genotypes, while when applied at the beginning of the main photoperiod far-red light did not affect the number of rosette leaves. Different effects on the plant form dependent on the time of treatment with far-red light-breaks are also discussed.  相似文献   

9.
Mutational analysis of blue-light sensing in Arabidopsis   总被引:2,自引:1,他引:1  
Blue light regulates many physiological and developmental processes in higher plants through the action of multiple photosensory systems. The analysis of photomorphogenic mutants is leading to a better understanding of how the different photosensory systems mediate the wide range of responses observed in blue light. A review of the current literature on photomorphogenic mutants makes it apparent that redundancies exist in photoreceptor function. For example, many blue-light responses that have been shown to be regulated by a blue-light photosensory system are also under phytochrome control. The study of various light-response mutants suggests that a complex sensory network regulates light-mediated responses. This article attempts to piece together information regarding the sensory systems responsible for blue-light-regulated responses.  相似文献   

10.
11.
Are two photoreceptors involved in the flowering of a long-day plant?   总被引:1,自引:0,他引:1  
The effect of daylength extension with narrow spectral bands on the flowering of a long-day plant, Brassica campestris L. cv. Ceres, was investigated to obtain clues to the identity of the photoreceptor involved. Extension of a 9 h photoperiod with 5 h of light pulses at various wavelengths resulted in maximal flowering occurring after irradiation at 710 nm, less at 730 nm, and none at 550, 660 and 750 nm. Flowering at 710 and 730 nm was negated by simultaneous exposures at 550 nm, but not at 660 nm. A short preirradiation at 660 nm enabled a following irradiation at 750 nm to induce flowering. This latter induction was prevented by 550 nm irradiation.
Short flashes of light at 710 nm induced flowering that was negated by a following flash at 550 nm but not at 660 nm. The negation by 550 nm radiation was prevented by subsequent flashes at 710 nm, indicating photoreversibility. A flash at 660 nm enabled subsequent light flashes at 750 nm to initiate flowering that was reversed by a following 550 nm flash.
From the results showing the necessity of red and far-red lights, it is proposed that flowering in this long-day plant is due to two photoreceptors - one is phytochrome and the other an unknown pigment with far-red, green photoreversible properties. By using fluence response data, it is deduced that the unidentified photoreceptor has weak absorption bands in the far-red, but has a strong absorption band in the green. Flowering is induced when effects of red light absorbed by phytochrome interact with effects of far-red light absorbed by the unidentified photoreceptor.  相似文献   

12.
Effect of light on seed germination of eight wetland Carex species   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: In wetland plant communities, species-specific responses to pulses of white light and to red : far-red light ratios can vary widely and influence plant emergence from the seed bank. Carex species are the characteristic plants of sedge meadows of natural prairie wetlands in mid-continental USA but are not returning to restored wetlands. Little is known about how light affects seed germination in these species-information which is necessary to predict seed bank emergence and to develop optimal revegetation practices. The effects of light on germination in eight Carex species from prairie wetlands were investigated. METHODS: Non-dormant seeds of eight Carex species were used to determine the influence of light on germination by examining: (a) the ability of Carex seeds to germinate in the dark; (b) the effect of different lengths of exposures to white light on germination; (c) whether the effect of white light can be replaced by red light; and (d) whether the germination response of Carex seeds to white or red light is photoreversible by far-red light. KEY RESULTS: Seeds of C. brevior and C. stipata germinated >25 % in continuous darkness. Germination responses after exposure to different lengths of white light varied widely across the eight species. Carex brevior required <15 min of white light for > or =50 % germination, while C. hystericina, C. comosa, C. granularis and C. vulpinoidea required > or =8 h. The effect of white light was replaced by red light in all species. The induction of germination after exposure to white or red light was reversed by far-red light in all species, except C. stipata. CONCLUSIONS: The species-specific responses to simulated field light conditions suggest that (a) the light requirements for germination contribute to the formation of persistent seed banks in these species and (b) in revegetation efforts, timing seed sowing to plant community development and avoiding cover crops will improve Carex seed germination.  相似文献   

13.
14.
Light regulation of photosynthetic genes   总被引:2,自引:0,他引:2  
  相似文献   

15.
As part of an effort to isolate new Arabidopsis mutants specifically defective in responsiveness to red light, we identified srl1 (short hypocotyl in red light) by screening an EMS-mutagenized M2 population derived from a phytochrome B (phyB)-overexpressor line (ABO). The srl1 mutant shows enhanced responsiveness to continuous red but not far-red light, in both wild-type and ABO backgrounds, consistent with involvement in the phyB-signaling pathway but not that of phyA. The hypersensitive phenotype of srl1 is not due to overexpression of endogenous phyA or phyB, and the locus maps to the center of chromosome 2, distinct from any other known photomorphogenic mutants. srl1 seedlings display enhancement of several phyB-mediated responses, including shorter hypocotyls, more expanded cotyledons, shorter petioles and modestly higher levels of CAB gene expression under red light than the wild type. Double mutant analyses show that the hypersensitive phenotype of srl1 is completely phyB-dependent. The data suggest, therefore, that SRL1 may encode a negatively acting component specific to the phyB-signaling pathway.  相似文献   

16.
Cryptochromes are blue-light receptors controlling multiple aspects of plant growth and development. They are flavoproteins with significant homology to photolyases, but instead of repairing DNA they function by transducing blue light energy into a signal that can be recognized by the cellular signaling machinery. Here we report the effect of cry1 and cry2 blue light receptors on primary root growth in Arabidopsis thaliana seedlings, through analysis of both cryptochrome-mutant and cryptochrome-overexpressing lines. Cry1 mutant seedlings show reduced root elongation in blue light while overexpressing seedlings show significantly increased elongation as compared to wild type controls. By contrast, the cry2 mutation has the opposite effect on root elongation growth as does cry1, demonstrating that cry1 and cry2 act antagonistically in this response pathway. The site of cryptochrome signal perception is within the shoot, and the inhibitor of auxin transport, 1-N-naphthylphthalamic acid, abolishes the differential effect of cryptochromes on root growth, suggesting the blue-light signal is transmitted from the shoot to the root by a mechanism that involves auxin. Primary root elongation in blue light may thereby involve interaction between cryptochrome and auxin signaling pathways.  相似文献   

17.
This review describes the phytochrome system in higher plants and cyanobacteria and its role in regulation of photosynthetic processes and stress protection of the photosynthetic apparatus. A relationship between the content of the different phytochromes, the changes in the ratios of the physiologically active forms of phytochromes to their total pool and the resulting influence on photosynthetic processes is reviewed. The role of the phytochromes in the regulation of the expression of genes encoding key photosynthetic proteins, antioxidant enzymes and other components involved in stress signaling is elucidated.  相似文献   

18.
The role of phytochrome B2 (phyB2) in the control of photomorphogenesis in tomato (Solanum lycopersicum L.) has been investigated using recently isolated mutants carrying lesions in the PHYB2 gene. The physiological interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phyB2 have also been explored, using an isogenic series of all possible mutant combinations and several different phenotypic characteristics. The loss of phyB2 had a negligible effect on the development of white-light-grown wild-type or phyA-deficient plants, but substantially enhanced the elongated pale phenotype of the phyB1 mutant. This redundancy was also seen in the control of de-etiolation under continuous red light (R), where the loss of phyB2 had no detectable effect in the presence of phyB1. Under continuous R, phyA action was largely independent of phyB1 and phyB2 in terms of the control of hypocotyl elongation, but antagonized the effects of phyB1 in the control of anthocyanin synthesis, indicating that photoreceptors may interact differently to control different traits. Irradiance response curves for anthocyanin synthesis revealed that phyB1 and phyB2 together mediate all the detectable response to high-irradiance R, and, surprisingly, that the phyA-dependent low-irradiance component is also strongly reduced in the phyB1 phyB2 double mutant. This is not associated with a reduction in phyA protein content or responsiveness to continuous far-red light (FR), suggesting that phyB1 and phyB2 specifically influence phyA activity under low-irradiance R. Finally, the phyA phyB1 phyB2 triple mutant showed strong residual responsiveness to supplementary daytime FR, indicating that at least one of the two remaining phytochromes plays a significant role in tomato photomorphogenesis.  相似文献   

19.
Development and acclimation of energy transduction were studied in seedlings of Chenopodium rubrum L. ecotype selection 184 (50° 10' N; 105° 35' W) in response to photomorphogenic and photoperiodic treatments. Dark respiration and photosynthetic capacity [nmol O2 (pair of cotyledons)−1 h−1] were measured with an oxygen electrode. Changes in chloroplast ultrastructure were analyzed concomitantly. After germination, seedlings were grown at constant temperature either in darkness or in continuous light (white, red, far-red and blue) or were subjected to diurnal cycles of light/dark or changes in light quality. Dark respiration was low in far-red light treated seedlings. In red light treated seedlings dark respiration was high and the mean value did not depend on fluence rate or photoperiod. Blue light stimulated transitorily and modulated dark respiration in photoperiodic cycles. Photosynthetic capacity was reduced by far-red light and increased by red light. In response to blue light photosynthetic capacity increased, with indications of a requirement for continuous energy input. Phytochrome and a separate blue light receptor seemed to be involved. In continuous red light a clear cut circadian rhythm of dark respiration was observed. Blue light had a specific effect on chloroplast structure.  相似文献   

20.
Wheat seedling grown with their shoot bottom exposed to red light (400 μmol m−2 s−1) either with constant illumination or light-dark cycles did not accumulate chlorophyll. This near-etiolation response was manifested by a critical threshold intensity of red light and did not need continuous illumination. The inhibition of the greening process resulted from reduced synthesis of glutamate-1-semialdehyde and consequent reduction in tetrapyrrole precursor 5-aminolevulinic acid. Red light perceived by the shoot bottom down regulated the protein and/or gene expression of enzymes involved in the biosynthesis of tetrapyrroles. The contents of endogenous cytokinins, i.e., isopentenyl-adenosine and dihydrozeatinriboside, were reduced in seedlings grown in red light having their shoot bottom exposed. Application of exogenous cytokinin and its analogue to roots of seedlings grown in red light reversed the down regulation of the greening process. The reversal of red-light-induced near-etiolation morphogenesis by far-red (200 μmol m−2 s−1) or blue (25 μmol m−2 s−1) light suggests that it could be a very high red-irradiance response of phytochrome, in the meristematic layers of the shoot bottom, that works in concert with blue light receptor(s). This work was supported by a competitive grant from the Department of Science and Technology, Govt. of India (DST/SP/SO/A-49/95) to BCT. Suchi Sood Varsha Gupta: Equal contributors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号