首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
Hepatic regeneration from hematopoietic stem cells   总被引:15,自引:0,他引:15  
In recent years, numerous investigators have reported novel cellular fates of multipotent stem or progenitor cells. In this review, we discuss the unexpected observations that hematopoietic stem cells can contribute to the hepatocyte lineage in humans and in rodent models of liver disease and regeneration. A key unresolved issue regarding hepatic regeneration from hematopoietic stem cells is whether the mechanism occurs through transdetermination, cell fusion, or other processes. A better understanding of the various stem or progenitor cells of the hepatic lineage may facilitate cellular transplantation approaches for the correction of hepatic function in patients with end-stage liver disease.  相似文献   

2.
Hematopoietic stem cells (HSC) are the source of all blood cell types produced during the entire life of an organism. They appear during embryonic development, where they will transit through different successive hematopoietic organs, before to finally colonize the bone marrow. Nowadays, the precise origin of HSC remains a matter of controversy. Different HSC precursor candidates, located in different anatomical sites, have been proposed. Here, we summarize and discuss the different theories in light of the recent articles, especially those using in vivo confocal microscopy technology.  相似文献   

3.
Hematopoietic stem cells have a remarkable plastic capacity, which allows them to differentiate into various cells, such as immune cells, nervous cells, muscle cells, bone and cartilaginous cells. The aim of this study was to show the capacity of stem cells to differentiate into endothelial cells, in culture, after addition of endothelial cells growth suplement (ECGS). We also compared the behavior of these cells with that of endothelial cells obtained from human umbilical vein (HUVEC). CD34+ cells obtained by immunomagnetic separation from human umbilical cord and placental blood were used. After 12-15 days of culture in a medium containing ECGS, the cells showed morphological changes characteristic to endothelial cells and immunocytochemical analysis revealed the presence of CD31 surface antigen and von Willebrand factor. The flow-cytometric analysis of endothelial cells adhesion molecules (ECAM) showed that endothelial cells derived from CD34+ cells expressed CD54/ICAM-1 9.65 ± 0.2% and CD106/VCAM 7.73±0.3%, values similar to those expressed by HUVECs. After TNF incubation, ECAM expression increased only in HUVECs. These data demonstrate that a fraction of circulating CD34+ cells may develop some endothelial cell characteristics when cultured with ECGS, but they are functionally different from HUVECs.  相似文献   

4.
An increasing number of studies show that platelet‐rich plasma (PRP) is effective for androgenic alopecia (AGA). However, the underlying cellular and molecular mechanisms along with its effect on hair follicle stem cells are poorly understood. In this study, we designed to induce platelets in PRP to release factors by calcium chloride (PC) or by sonication where platelet lysates (PS) or the supernatants of platelet lysate (PSS) were used to evaluate their effect on the hair follicle activation and regeneration. We found that PSS and PS exhibited a superior effect in activating telogen hair follicles than PC. In addition, PSS injection into the skin activated quiescent hair follicles and induced K15+ hair follicle stem cell proliferation in K14‐H2B‐GFP mice. Moreover, PSS promoted skin‐derived precursor (SKP) survival in vitro and enhanced hair follicle formation in vivo. In consistence, protein array analysis of different PRP preparations revealed that PSS contained higher levels of 16 growth factors (out of 41 factors analysed) than PC, many of them have been known to promote hair follicle regeneration. Thus, our data indicate that sonicated PRP promotes hair follicle stem cell activation and de novo hair follicle regeneration.  相似文献   

5.
Endothelial progenitor cells for regeneration   总被引:4,自引:0,他引:4  
Masuda H  Kalka C  Asahara T 《Human cell》2000,13(4):153-160
Endothelial progenitor cells (EPCs) have been recently isolated from peripheral blood and bone marrow (BM), and shown to be incorporated into sites of physiological and pathological neovascularization in vivo. In contrast to differentiated endothelial cells (ECs), transplantation of EPCs successfully enhanced vascular development by in situ differentiation and proliferation within ischemic organs. Based on such a novel concept of closed up function on EPCs in postnatal neovascularization, the beneficial property of EPC is attractive for cell therapy as well as cell-mediated gene therapy applications targeting regeneration of ischemic tissue.  相似文献   

6.
《Cell Stem Cell》2021,28(11):1982-1999.e8
  1. Download : Download high-res image (124KB)
  2. Download : Download full-size image
  相似文献   

7.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

8.
A stem cell is defined as a cell with the capacity to both self-renew and generate multiple differentiated progeny. Embryonic stem cells (ESC) are derived from the blastocyst of the early embryo and are pluripotent in differentiative ability. Their vast differentiative potential has made them the focus of much research centered on deducing how to coax them to generate clinically useful cell types. The successful derivation of hematopoietic stem cells (HSC) from mouse ESC has recently been accomplished and can be visualized in this video protocol. HSC, arguably the most clinically exploited cell population, are used to treat a myriad of hematopoietic malignancies and disorders. However, many patients that might benefit from HSC therapy lack access to suitable donors. ESC could provide an alternative source of HSC for these patients. The following protocol establishes a baseline from which ESC-HSC can be studied and inform efforts to isolate HSC from human ESC. In this protocol, ESC are differentiated as embryoid bodies (EBs) for 6 days in commercially available serum pre-screened for optimal hematopoietic differentiation. EBs are then dissociated and infected with retroviral HoxB4. Infected EB-derived cells are plated on OP9 stroma, a bone marrow stromal cell line derived from the calvaria of M-CSF-/- mice, and co-cultured in the presence of hematopoiesis promoting cytokines for ten days. During this co-culture, the infected cells expand greatly, resulting in the generation a heterogeneous pool of 100 s of millions of cells. These cells can then be used to rescue and reconstitute lethally irradiated mice.  相似文献   

9.
Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO signaling associated with bone marrow failure and thrombocytopenia. Recent studies have shown that constitutive activation mutations in Mpl contribute to myeloproliferative disease. In this review, we will discuss TPO signaling pathways, regulation of TPO levels and the role of TPO in normal hematopoiesis and during myeloproliferative disease.Key words: thrombopoietin, TPO, Mpl, hematopoietic stem cell, hematopoiesis, Jak2, MPLW515K, MPLW515L  相似文献   

10.
Hematopoietic stem cells (HSCs) are inherently quiescent and self-renewing, yet can differentiate and commit to multiple blood cell types. Intracellular mitochondrial content is dynamic, and there is an increase in mitochondrial content during differentiation and lineage commitment in HSCs. HSCs reside in a hypoxic niche within the bone marrow and rely heavily on glycolysis, while differentiated and committed progenitors rely on oxidative phosphorylation. Increased oxidative phosphorylation during differentiation and commitment is not only due to increased mitochondrial content but also due to changes in mitochondrial cytosolic distribution and efficiency. These changes in the intracellular mitochondrial landscape contribute signals toward regulating differentiation and commitment. Thus, a functional relationship exists between the mitochondria in HSCs and the state of the HSCs (i.e., stemness vs. differentiated). This review focuses on how autophagy-mediated mitochondrial clearance (i.e., mitophagy) may affect HSC mitochondrial content, thereby influencing the fate of HSCs and maintenance of hematopoietic homeostasis.  相似文献   

11.
Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO signaling associated with bone marrow failure and thrombocytopenia. Recent studies have shown that constitutive activation mutations in Mpl contribute to myeloproliferative disease. In this review, we will discuss TPO signaling pathways, regulation of TPO levels and the role of TPO in normal hematopoiesis and during myeloproliferative disease.  相似文献   

12.
Mesenchymal stem/stromal cells (MSCs) are fibroblastoid cells capable of long-term expansion and skeletogenic differentiation. While MSCs are known to originate from neural crest and mesoderm, immediate mesodermal precursors that give rise to MSCs have not been characterized. Recently, using human embryonic stem cells (hESCs), we demonstrated that mesodermal MSCs arise from APLNR+ precursors with angiogenic potential, mesenchymoangioblasts, which can be identified by FGF2-dependent colony-forming assay in serum-free semisolid medium. In this overview we provide additional insights on cellular pathways leading to MSC establishment from mesoderm, with special emphasis on endothelial-mesenchymal transition as a critical step in MSC formation. In addition, we highlight an essential role of FGF2 in induction of angiogenic cells with potential to transform into MSCs (mesenchymoangioblasts) or hematopoietic cells (hemangioblasts) from mesoderm, and discuss correlations of our in vitro findings with the course of angioblast development during embryogenesis.Key words: mesenchymoangioblast, hemangioblast, human embryonic stem cells, endothelial-mesenchymal transition, epithelial-mesenchymal transition, mesenchymal stem cells, endothelial cells, apelin receptor, FGFMesenchymal stem/stromal cells (MSCs) are defined as multipotent fibroblastoid cells that give rise to cells of the skeletal connective tissue including osteoblasts, chondrocytes and adipocytes.14 Although MSCs were described more than 40 years ago and are widely used for cellular therapies, very little knowledge exists regarding the developmental origins of MSCs in the embryo, the hierarchy of MSC progenitors or heterogeneity of MSCs within tissues. It has been demonstrated that during embryonic development, MSCs arise from a two major sources: neural crest and mesoderm.57 Using Cre-recombinase lineage tracing experiments, Takashima et al. identified Sox1+ neuroepithelium as pre-cursors of MSCs of neural crest origin. However, direct precursors of mesoderm-derived MSCs were unknown. To identify these precursors, we employed human embryonic stem cells (hESCs) directed toward mesendodermal differentiation in coculture with mouse bone marrow stromal cells OP9,8 using the experimental approach depicted in Figure 1. As shown in this differentiation system, mesoderm reminiscent of lateral plate/extraembryonic mesoderm in the embryo can be identified by expression of apelin receptor (APLNR), otherwise known as angiotensin receptor like-1 receptor. Because we observed a positive selective effect of FGF2 on production of mesenchymal cells from hESCs in OP9 coculture, we decided to test whether FGF2 can induce the formation of colonies with mesenchymal potential from APLNR+ mesodermal cells. Indeed, when we isolated APLNR+ cells from hESCs differentiated on OP9 for 2 days and placed them in serum-free semisolid medium containing FGF2, we observed the formation of sharply-circumscribed spheroid colonies formed by tightly packed cells with a gene expression profile representative of embryonic mesenchyme originating from lateral plate/extraembryonic mesoderm and CD140a+CD146+C D90+CD56+CD166+CD31CD43CD45 phenotype typical of mesenchymal cells. Based on cellular composition, we designated these colonies as mesenchymal (MS) colonies and cells forming these colonies as MS colony-forming cells (MS-CFCs). MS colony formation required serum-free medium and was solely dependent on FGF2 as a colony-forming factor. MS colonies were significantly enhanced by PDGF-BB, but suppressed by VEGF, TGFβ1 and Activin A. When transferred to the adherent cultures in serum-free medium with FGF2, individual MS colonies gave rise to multi-potential mesenchymal cell lines with typical phenotype (CD146+ CD105+ CD73+ CD31 CD43/45), differentiation (chondro-, osteo- and adipogenesis) and robust proliferation (>80 doublings) potentials. Using single cell deposition assay, chimeric hESC lines and time-lapse studies we demonstrated the clonality/single cell origin of MS colonies.Open in a separate windowFigure 1Schematic diagram of the experimental approach used to identify precursors and cellular events leading to formation of mesoderm-derived MSCs. hESCs were committed to mesendodermal differentiation through coculture with OP9 for 2 days. APLNR+ mesodermal cells were selected using magnetic sorting. In serum-free semisolid medium, APLNR+ cells grew into FGF2-dependent compact spheroid colonies composed of mesenchymal cells. MS colonies were formed through establishment of tightly-packed single cell-derived cores (day 3 of clonogenic culture), which expanded into spheroid colonies (days 6 and 12 of clonogenic culture). To evaluate differentiation potential, MS colonies were collected at different stages of clonogenic culture and placed on OP9. The presence of endothelial and mesenchymal cells after coculture of MS colonies with OP9 was evaluated by flow cytometry and immunofluorescence. In addition, colonies at core stage (day 3 of clonogenic culture) and mature colonies (day 12 of clonogenic cultures) were collected for molecular profiling studies. To generate clonal MSC lines, individual mature colonies were plated on the collagen/fibronectin-coated plastic and cultured in presence of FGF2.MS-CFCs could be detected only transiently, with a major peak on day 2 of hESC differentiation and disappeared after 4 days of differentiation. Notably, MS-CFC activity was developed prior to the expression of CD73 and CD105 MSC markers and upregulation of MSC-related genes, i.e., before onset of mesenchymogenesis. APLNR+ cells isolated from hESC cultures differentiated for 3 days also formed colonies in response to FGF2; however, the vast majority of these colonies were composed of blood cells and had a morphology similar to the previously described blast (BL) or hemangioblast colonies, which identify a common precursor for hematopoietic and endothelial cells.9,10To fully evaluate the differentiation potential of MS colonies, we collected these colonies from semisolid cultures and placed them back on OP9 feeders, which are known to support development of a broad range of mesodermal lineage cells, including hematopoietic, vascular and cardiac.1113 Using this approach, we confirmed that individual BL colonies possess hemangioblastic potential, i.e., generate both hematopoietic and endothelial cells. When MS colonies were picked from clonogenic cultures and cultured on OP9, we found that the majority of cells differentiated into CD146+CD31CD43/CD45 mesenchymal cells as expected. However, we also discovered that MS colonies gave rise to CD31/VE-cadherin+CD43/45 endothelial cells, indicating that MS colonies similar to BL colonies possess endothelial potential. The endothelial potential of MS colonies was also confirmed by demonstration of tube formation by MS colonies grown on Matrigel. In contrast, MSC lines derived from MS colonies did not produce any endothelial cells after coculture with OP9 indicating a progressive restriction of differentiation potential following MSC formation. Because single MS-CFC shows potential to form endothelium and MSCs, we designated the MSC precursor identified by this colony-forming assay as mesenchymoangioblast.To define more precisely the cellular events leading to establishing MSCs, we examined the formation of MS colonies using time-lapse cinematography and analyzed the kinetic of their angiogenic potential. As demonstrated by time-lapse studies, APLNR+ mesodermal cells placed in semisolid medium possessed a high motility, which was more pronounced before and during the first cell division. Following several divisions, single APLNR+ cells formed a core, an immotile structure composed of a small number of tightly packed cells. While APLNR+ mesodermal cells lacked endothelial gene expression, molecular profiling of MS colonies at the core stage revealed that these cells acquired angioblastic gene expression profile as indicated by upregulation of FLT1, TEK, CDH5 (VE-cadherin), PECAM1 (CD31), FLI1, SELE (ELAM-1) and ICAM2 endothelial genes. When we collected MS cores (day 3 of clonogenic culture) and placed them on OP9, they formed predominantly VE-cadherin+ endothelial clusters, strongly indicating the endothelial nature of the core-forming cells. Subsequently, cells at the periphery of the core underwent endothelial-mesenchymal transition (EndMT) and formed a shell of tightly packed spindle-like cells around the core. When we picked colonies at this stage (day 6 of colony-forming culture) and placed them on OP9, most of the colonies (>70%) grew cell clusters composed of endothelial and mesenchymal cells. In contrast, mature MS colonies collected on day 12 of clonogenic culture formed predominantly clusters of mesenchymal cells, indicating a progressive loss of endothelial potential following colony maturation. Although no CD31 expression was detected in the mesenchymal cells composing mature MS colonies, these cells retained several endothelial traits including surface expression of endothelial tyrosine kinase (TEK or TIE2), FLT1 (VEGFR1) and endomucin. The critical role of EndMT in MS colony formation and MSC development was also congruous with our observation of the suppressive effect of VEGF, a known inhibitor of EndMT,14,15 on MS colonies. When VEGF was added to MS clonogenic cultures, hESC-derived mesodermal cells were capable of forming angiogenic cores; however, these cores did not transform into mesenchymal cells, indicating that VEGF abrogates MS colony development at the core stage through inhibition of EndoMT. The schematic diagram demonstrating development of mesodermal MSCs is presented in Figure 2.Open in a separate windowFigure 2A model of mesoderm-derived MSC development from hESCs. Coculture with OP9 stromal cells predominantly induces hESC differentiation toward APLNR+ mesoderm. APLNR+ population contains angiogenic mesodermal precursors with either mesenchymal (mesenchymoangioblast) or hematopoietic (hemangioblast) potentials. Mesenchymoangioblasts and hemangioblasts arise sequentially during differentiation and can be revealed by MS and BL colony formation in response to FGF2. Development of MS and BL colonies in semisolid media proceed through a core stage at which APLNR+ cells form clusters of tightly packed cells with angiogenic potential. Subsequently, core-forming cells undergo EndMT giving rise to mesenchymal cells, which form a shell around the core developing into a mature MS colony. VEGF, EndMT inhibitor, blocks MS colony-formation at core stage. The ability of MS-CFCs to generate mesenchymal and endothelial cells can be revealed by coculture of individual colonies with OP9. Similar to MS colonies, BL colonies are formed through establishment of angiogenic core. However, hemangioblast core-forming cells undergo endothelial-hematopoietic transition and grew hematopoietic cells around the core.The close relationship between endothelial and hematopoietic cell development was recognized more than 130 years ago (reviewed by ref. 16) and confirmed in multiple modern studies.9,1722 However, the association between endothelial pre-cursors and MSCs during development was not well established, although cells with endothelial and mural cell potential were identified23 and the critical role of EndMT in the formation of endocardial cushion24 and testicular cords25 in the embryo was acknowledged. Our hESC-based in vitro studies indicated that formation of mesodermal MSCs proceed through the endothelial stage and likely included at least two successive cycles of cell transitions. Initially APLNR+ mesoderm, which consists of fibroblast-like migratory cells, give rise to core structures composed of tightly packed endothelial cells in response to FGF2. Subsequently, endothelial cells forming cores undergo epithelial-mesenchymal transition, i.e., EndMT and form MSCs. The question remains how well this in vitro model reflects in vivo development. Although only sparse data exist regarding MSC precursors in the embryo, development of angiogenic hematopoietic precursors, hemangioblasts was studied more extensively in mammals and birds, and therefore parallels between in vivo and in vitro studies can be drawn. As we demonstrated,8 APLNR+ mesodermal cells collected from hESCs differentiated on OP9 for 3 days formed disperse BL colonies that identify hemangioblasts in vivo and in vitro.9,26 Similar to MS colonies, the development of BL colonies required FGF2 and proceeded through angiogenic core formation. However, in contrast to MS cores, BL cores transformed into blood cells, i.e., underwent endothelial-hematopoietic transformation (see Fig. 2). Importantly, in vivo studies identified FGF2 as the essential factor in hemangioblast induction27 analogous to our in vitro observation. In chicken embryo, the activation of FGF signaling leads to aggregation of migrating mesodermal cells adjacent to the endoderm, upregulation of VEGFR2 (KDR) expression, and subsequent formation of angioblasts and hemangioblasts.2830 This sequence of events leading to hemangioblast development in vivo considerably resembles what we observed in vitro, and highly suggests accurate recapitulation of embryonic development by our hESC differentiation model. Therefore, searching for an in vivo equivalent of mesenchymonagioblast would be a reasonable next step.In addition to embryonic development, EndMT is also implicated in several pathologies including cancer progression and development of cardiac and renal fibrosis.3134 Recently, Olsen group revealed that endothelial cells could be transformed directly into MSCs through overexpression of ALK2 or its activation by TGFβ2 or BMP4,15 indicating that endothelial cells could be an important source of MSCs in postnatal life. Conversely, the transition from MSCs to endothelial cells, has been also described in reference 35. Based on these observations, a cycle of cell-fate transition from endothelium to MSCs and back to endothelium was proposed as a circuit controlling stem cell state.36 Since multiple parallels could be drawn between EndMT described in adult tissues and during hESC differentiation, one may wonder whether bipotential cells with endothelial and MSC potential similar to embryonic mesenchymoangioblasts are present and constitute an important element of EndMT circuit in adults.In conclusion, the identification of mesenchymoangioblast as a clonogenic precursor of mesoderm-derived MSCs is an important step toward defining pathways of MSC development and specification. In addition, the demonstration of MSC formation from mesoderm through EndMT provides new insights into the mechanisms involved in establishment of MSCs.  相似文献   

13.
Mesenchymal stem/stromal cells (MSCs) are fibroblastoid cells capable of long-term expansion and skeletogenic differentiation. While MSCs are known to originate from neural crest and mesoderm, immediate mesodermal precursors that give rise to MSCs have not been characterized. Recently, using human embryonic stem cells (hESCs), we demonstrated that mesodermal MSCs arise from APLNR+ precursors with angiogenic potential, mesenchymoangioblasts, which can be identified by FGF2-dependent colony-forming assay in serum-free semisolid medium. In this overview we provide additional insights on cellular pathways leading to MSC establishment from mesoderm, with special emphasis on endothelial-mesenchymal transition as a critical step in MSC formation. In addition, we highlight an essential role of FGF2 in induction of angiogenic cells with potential to transform into MSCs (mesenchymoangioblasts) or hematopoietic cells (hemangioblasts) from mesoderm, and discuss correlations of our in vitro findings with the course of angioblast development during embryogenesis.  相似文献   

14.
15.
16.
17.
Mesenchymal stromal/stem cells (MSC) of bone marrow (BM) origin not only provide the supportive microenvironmental niche for hematopoietic stem cells (HSC) but are capable of differentiating into various cell types of mesenchymal origin, such as bone, fat and cartilage. In vitro and in vivo data suggest that MSC have low inherent immunogenicity, modulate/suppress immunologic responses through interactions with immune cells, and home to damaged tissues to participate in regeneration processes through their diverse biologic properties. MSC derived from BM are being evaluated for a wide range of clinical applications, including disorders as diverse as myocardial infarction and newly diagnosed diabetes mellitus type 1. However, their use in HSC transplantation, either for enhancement of hematopoietic engraftment or for treatment/prevention of graft-versus-host disease, is far ahead of other indications. Ease of isolation and ex vivo expansion of MSC, combined with their intriguing immunomodulatory properties and their impressive record of safety in a wide variety of clinical trials, make these cells promising candidates for further investigation.  相似文献   

18.
Retinal stem cells and regeneration   总被引:5,自引:0,他引:5  
The optic vesicle gives rise to several very different epithelial tissues, including the neural retina, the pigmented epithelium, the iris, the ciliary epithelium of the ciliary body and the optic stalk. Retinal regeneration can arise from several different cellular sources; in some species, the process involves interconversion, or transdifferentiation, among cells of the different tissue types. Therefore, prior to a discussion of retinal regeneration, we will briefly discuss current knowledge about the influence of signaling molecules in cell fate determination in ocular tissues. Next, we will detail the evidence for neurogenesis in the mature retina. Lastly, we will describe various types of regenerative phenomena that occur in the retina, from complete regeneration of functional retina in fish and amphibians, to the more limited neuronal production that occurs in avian and mammalian retinas.  相似文献   

19.
Bone regeneration and stem cells   总被引:1,自引:0,他引:1  
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.  相似文献   

20.
刘廷析 《生命科学》2009,21(5):675-678
造血干细胞(hematopoietic stem cell,HSC)是成体干细胞研究领域的范式。对造血干细胞自我更新和不对称分裂分子遗传学机制的诠释,将不仅帮助理解成体干细胞“干性”维持的发育遗传学机制,也将对白血病干细胞和其他类型肿瘤干细胞的发育起源及开发针对肿瘤干细胞的靶向治疗模式产生深远的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号