首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The IkappaB kinase-related kinases, TBK1 and IKKi, were recently shown to be responsible for the C-terminal phosphorylation of IRF-3. However, the identity of the phosphoacceptor site(s) targeted by these two kinases remains unclear. Using a biological assay based on the IRF-3-mediated production of antiviral cytokines, we demonstrate here that all Ser/Thr clusters of IRF-3 are required for its optimal transactivation capacity. In vitro kinase assays using full-length His-IRF-3 as a substrate combined with mass spectrometry analysis revealed that serine 402 and serine 396 are directly targeted by TBK1. Analysis of Ser/Thr-to-Ala mutants revealed that the S396A mutation, located in cluster II, abolished IRF-3 homodimerization, CBP association, and nuclear accumulation. However, production of antiviral cytokines was still present in IRF-3 S396A-expressing cells. Interestingly, mutation of serine 339, which is involved in IRF-3 stability, also abrogated CBP association and dimerization without affecting gene transactivation as long as serine 396 remained available for phosphorylation. Complementation of IRF-3-knockout mouse embryonic fibroblasts also revealed a compensatory mechanism of serine 339 and serine 396 in the ability of IRF-3 to induce expression of the interferon-stimulated genes ISG56 and ISG54. These data lead us to reconsider the current model of IRF-3 activation. We propose that conventional biochemical assays used to measure IRF-3 activation are not sensitive enough to detect the small fraction of IRF-3 needed to elicit a biological response. Importantly, our study establishes a molecular link between the role of serine 339 in IRF-3 homodimerization, CBP association, and its destabilization.  相似文献   

5.
6.
Liu F  Iqbal K  Grundke-Iqbal I  Gong CX 《FEBS letters》2002,530(1-3):209-214
Microtubule-associated protein tau is abnormally hyperphosphorylated, glycosylated, and aggregated in affected neurons in the brains of individuals with Alzheimer’s disease (AD). We recently found that the glycosylation might precede hyperphosphorylation of tau in AD. In this study, we investigated the effect of glycosylation on phosphorylation of tau catalyzed by cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3β (GSK-3β). The phosphorylation of the longest isoform of recombinant human brain tau, tau441, at various sites was detected by Western blots and by radioimmuno-dot-blot assay with phosphorylation-dependent and site-specific tau antibodies. We found that cdk5 phosphorylated tau441 at Thr-181, Ser-199, Ser-202, Thr-205, Thr-212, Ser-214, Thr-217, Thr-231, Ser-235, Ser-396, and Ser-404, but not at Ser-262, Ser-400, Thr-403, Ser-409, Ser-413, or Ser-422. GSK-3β phosphorylated all the cdk5-catalyzed sites above except Ser-235. Deglycosylation by glycosidases depressed the subsequent phosphorylation of AD-tau (i) with cdk5 at Thr-181, Ser-199, Ser-202, Thr-205, and Ser-404, but not at Thr-212; and (ii) with GSK-3β at Thr-181, Ser-202, Thr-205, Ser-217, and Ser-404, but not at Ser-199, Thr-212, Thr-231, or Ser-396. These data suggest that aberrant glycosylation of tau in AD might be involved in neurofibrillary degeneration by promoting abnormal hyperphosphorylation by cdk5 and GSK-3β.  相似文献   

7.
FilGAP is a Rho GTPase-activating protein (GAP) that specifically regulates Rac. FilGAP is phosphorylated by ROCK, and this phosphorylation stimulates its RacGAP activity. However, it is unclear how phosphorylation regulates cellular functions and localization of FilGAP. We found that non-phosphorylatable FilGAP (ST/A) mutant is predominantly localized to the cytoskeleton along actin filaments and partially co-localized with vinculin around cell periphery, whereas phosphomimetic FilGAP (ST/D) mutant is diffusely cytoplasmic. Moreover, phosphorylated FilGAP detected by Phos-tag is also mainly localized in the cytoplasm. Of the six potential phosphorylation sites in FilGAP tested, only mutation of serine 402 to alanine (S402A) resulted in decreased cell spreading on fibronectin. FilGAP phosphorylated at Ser-402 is localized to the cytoplasm but not at the cytoskeleton. Although Ser-402 is highly phosphorylated in serum-starved quiescent cells, dephosphorylation of Ser-402 is accompanied with the cell spreading on fibronectin. Treatment of the cells expressing wild-type FilGAP with calyculin A, a Ser/Thr phosphatase inhibitor, suppressed cell spreading on fibronectin, whereas cells transfected with FilGAP S402A mutant were not affected by calyculin A. Expression of constitutively activate Arf6 Q67L mutant stimulated membrane blebbing activity of both non-phosphorylatable (ST/A) and phosphomimetic (ST/D) FilGAP mutants. Conversely, depletion of endogenous Arf6 suppressed membrane blebbing induced by FilGAP (ST/A) and (ST/D) mutants. Our study suggests that Arf6 and phosphorylation of FilGAP may regulate FilGAP, and phosphorylation of Ser-402 may play a role in the regulation of cell spreading on fibronectin.  相似文献   

8.
Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.  相似文献   

9.
The role and control of the four rapamycin-sensitive phosphorylation sites that govern the association of PHAS-I with the mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), were investigated by using newly developed phospho-specific antibodies. Thr(P)-36/45 antibodies reacted with all three forms of PHAS-I that were resolved when cell extracts were subjected to SDS-polyacrylamide gel electrophoresis. Thr(P)-69 antibodies bound the forms of intermediate and lowest mobility, and Ser(P)-64 antibodies reacted only with the lowest mobility form. A portion of PHAS-I that copurified with eIF4E reacted with Thr(P)-36/45 and Thr(P)-69 antibodies but not with Ser(P)-64 antibodies. Insulin and/or amino acids increased, and rapamycin decreased, the reactivity of all three antibodies with PHAS-I in both HEK293 cells and 3T3-L1 adipocytes. Immunoprecipitated epitope-tagged mammalian target of rapamycin (mTOR) phosphorylated Thr-36/45. mTOR also phosphorylated Thr-69 and Ser-64 but only when purified immune complexes were incubated with the activating antibody, mTAb1. Interestingly, the phosphorylation of Thr-69 and Ser-64 was much more sensitive to inhibition by rapamycin-FKBP12 than the phosphorylation of Thr-36/45, and the phosphorylation of Ser-64 by mTOR was facilitated by phosphorylation of Thr-36, Thr-45, and Thr-69. In these respects the phosphorylation of PHAS-I by mTOR in vitro resembles the ordered phosphorylation of PHAS-I in cells.  相似文献   

10.
The chemokine receptor CXCR4 is a widely expressed G protein-coupled receptor that has been implicated in a number of diseases including human immunodeficiency virus, cancer, and WHIM syndrome, with the latter two involving dysregulation of CXCR4 signaling. To better understand the role of phosphorylation in regulating CXCR4 signaling, tandem mass spectrometry and phospho-specific antibodies were used to identify sites of agonist-promoted phosphorylation. These studies demonstrated that Ser-321, Ser-324, Ser-325, Ser-330, Ser-339, and two sites between Ser-346 and Ser-352 were phosphorylated in HEK293 cells. We show that Ser-324/5 was rapidly phosphorylated by protein kinase C and G protein-coupled receptor kinase 6 (GRK6) upon CXCL12 treatment, whereas Ser-339 was specifically and rapidly phosphorylated by GRK6. Ser-330 was also phosphorylated by GRK6, albeit with slower kinetics. Similar results were observed in human astroglia cells, where endogenous CXCR4 was rapidly phosphorylated on Ser-324/5 by protein kinase C after CXCL12 treatment, whereas Ser-330 was slowly phosphorylated. Analysis of CXCR4 signaling in HEK293 cells revealed that calcium mobilization was primarily negatively regulated by GRK2, GRK6, and arrestin3, whereas GRK3, GRK6, and arrestin2 played a primary role in positively regulating ERK1/2 activation. In contrast, GRK2 appeared to play a negative role in ERK1/2 activation. Finally, we show that arrestin association with CXCR4 is primarily driven by the phosphorylation of far C-terminal residues on the receptor. These studies reveal that site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases resulting in both positive and negative modulation of CXCR4 signaling.  相似文献   

11.
12.
A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides, or peptides altered in hydrophilicity such as phosphopeptides. We used microcolumns to compare the ability of RP resin or graphite powder to retain phosphopeptides. A number of standard phosphopeptides and a biologically relevant phosphoprotein, dynamin I, were analyzed. MS revealed that some phosphopeptides did not bind the RP resin but were retained efficiently on the graphite. Those that did bind the RP resin often produced much stronger signals from the graphite powder. In particular, the method revealed a doubly phosphorylated peptide in a tryptic digest of dynamin I purified from rat brain nerve terminals. The detection of this peptide was greatly enhanced by graphite micropurification. Sequencing by tandem MS confirmed the presence of phosphate at both Ser-774 and Ser-778, while a singly phosphorylated peptide was predominantly phosphorylated only on Ser-774. The method further revealed a singly and doubly phosphorylated peptide in dynamin III, analogous to the dynamin I sequence. A pair of dynamin III phosphorylation sites were found at Ser-759 and Ser-763 by tandem MS. The results directly define the in vivo phosphorylation sites in dynamins I and III for the first time. The findings indicate a large improvement in the detection of small amounts of phosphopeptides by MS and the approach has major implications for both small- and large-scale projects in phosphoproteomics.  相似文献   

13.
14.
15.
16.
Promotion of hyperphosphorylation by frontotemporal dementia tau mutations   总被引:5,自引:0,他引:5  
Mutations in the tau gene are known to cosegregate with the disease in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). However, the molecular mechanism by which these mutations might lead to the disease is not understood. Here, we show that four of the FTDP-17 tau mutations, R406W, V337M, G272V, and P301L, result in tau proteins that are more favorable substrates for phosphorylation by brain protein kinases than the wild-type, largest four-repeat protein tau4L and tau4L more than tau3L. In general, at all the sites studied, mutant tau proteins were phosphorylated faster and to a higher extent than tau4L and tau4L > tau3L. The most dramatic difference found was in the rate and level of phosphorylation of tau4L(R406W) at positions Ser-396, Ser-400, Thr-403, and Ser-404. Phosphorylation of this mutant tau was 12 times faster and 400% greater at Ser-396 and less than 30% at Ser-400, Thr-403, and Ser-404 than phosphorylation of tau4L. The mutated tau proteins polymerized into filaments when 4-6 mol of phosphate per mol of tau were incorporated, whereas wild-type tau required approximately 10 mol of phosphate per mol of protein to self-assemble. Mutated and wild-type tau proteins were able to sequester normal tau upon incorporation of approximately 4 mol of phosphate per mol of protein, which was achieved at as early as 30 min of phosphorylation in the case of mutant tau proteins. These findings taken together suggest that the mutations in tau might cause neurodegeneration by making the protein a more favorable substrate for hyperphosphorylation.  相似文献   

17.
Phosducin (Pdc) is a G protein beta gamma dimer (G beta gamma) binding protein, highly expressed in retinal photoreceptor and pineal cells, yet whose physiological role remains elusive. Light controls the phosphorylation of Pdc in a cAMP and Ca(2+)-dependent manner, and phosphorylation in turn regulates the binding of Pdc to G(t)beta gamma or 14-3-3 proteins in vitro. To directly examine the phosphorylation of Pdc in intact retina, we prepared antibodies specific to the three principal phosphorylation sites (Ser-54, Ser-73, and Ser-106) and measured the kinetics of phosphorylation/dephosphorylation during light/dark adaptation and the subsequent effects on G(t)beta gamma binding. Ser-54 phosphorylation increased slowly (t((1/2)) approximately 90 min) during dark adaptation to approximately 70% phosphorylated and decreased rapidly (t((1/2)) approximately 2 min) during light adaptation to less than 20% phosphorylated. Ser-73 phosphorylation increased much faster during dark adaptation (t((1/2)) approximately 3 min) to approximately 50% phosphorylated and decreased more slowly during light adaptation (t((1/2)) approximately 9 min) to less than 20% phosphorylated. The Ca(2+) chelator BAPTA-AM blocked Ser-54 phosphorylation during dark adaptation but had no effect on Ser-73 phosphorylation. In contrast, Ser-106 was not phosphorylated in either the light or dark. Importantly, G beta gamma binding to Pdc was enhanced by Ca(2+) chelation and the binding kinetics closely paralleled those of Ser-54 dephosphorylation, indicating that Ser-54 phosphorylation controls G(t)beta gamma binding in vivo. These results suggest a pivotal role of Ser-54 and Ser-73 phosphorylation in determining the interactions of Pdc with its binding partners, G(t)beta gamma and 14-3-3 protein, which may regulate the light-dependent translocation of the photoreceptor G protein.  相似文献   

18.
Phosphorylation and regulation of beta-catenin by casein kinase I epsilon   总被引:2,自引:0,他引:2  
beta-Catenin transduces cytosolic signals to the nucleus in the Wnt pathway. The Wnt ligand stabilizes cytosolic beta-catenin protein, preventing its phosphorylation by inhibiting glycogen synthase kinase 3 (GSK3). Serine-33 and -37 of beta-catenin are GSK3 phosphorylation sites that serve as recognition sites for the beta-TRCP-ubiquitin ligase complex, which ultimately triggers beta-catenin degradation. Mutations at those two sites, as well as in Ser-45, stabilize beta-catenin. Recently, casein kinase I epsilon (CKI epsilon) has been shown to be a positive regulator of the Wnt pathway. Its action mechanism, however, remains unknown. Here I show that Ser-45 is phosphorylated not by GSK3 but by CKI epsilon. Axin, a scaffold protein that binds CKI epsilon and beta-catenin, enhances this CKI epsilon-mediated phosphorylation. Overexpression of CKI epsilon in cells increases the amount of beta-catenin phosphorylated at Ser-45. Ser-45 phosphorylated beta-catenin is a better substrate for GSK3, which suggests that CKI epsilon and GSK3 may co-operate in destabilizing beta-catenin. In spite of the fact that CKI epsilon was found as a positive regulator of the Wnt pathway, mutational analysis suggests that mutation of Ser-45 regulates beta-catenin stability by inhibiting the ability of GSK3 to phosphorylate Ser-33 and -37, thereby disrupting the interaction between beta-catenin, beta-TRCP and Axin. I propose that phosphorylation of Ser-45 by CKI epsilon plays an important role in regulating beta-catenin stability.  相似文献   

19.
We have identified the phosphorylation sites in monkey p53 as well as specific changes in the phosphorylation state of free and complexed forms of simian virus 40 (SV40) large T antigen (T) and monkey p53 isolate from SV40 lytically infected CV1 cells. Phosphopeptide analyses of free T and p53 (To and p53o) and complexed T and p53 (T+ and p53+) fractions indicated several quantitative increases in the specific phosphorylation of complexed forms of both proteins. The N terminus of monkey p53+ is phosphorylated at Ser-9, Ser-15, Ser-20, either Ser-33 or Ser-37, and at least one of Ser-90 to Ser-99. The C-terminal sites are Ser-315 and Ser-392. On comparing p53+ with p53o, we found that labeling of the two N-terminal phosphotryptic peptides encompassing residues 1 to 20 and 33 to 101 was increased fivefold and that Ser-315 was sevenfold more labeled than was Ser-392. When T+ was compared with To, the N-terminal peptide containing phosphorylation sites Ser-106 through Thr-124 was twofold more labeled, the peptide containing Ser-657 through Ser-679 was sixfold more labeled and contained up to four phosphorylated serine residues, and Ser-639 and Thr-701 appeared unchanged. Overall, T+ molecules appeared to contain 3.5 mol more of labeled phosphate than did To, with the N-terminal peptide appearing fully phosphorylated. The phosphopeptide patterns obtained for lytic T+ and To fractions were nearly identical to those found for wild-type SV40 T (stably complexed with mouse p53) and mutant 5080 T (defective for p53 binding) expressed in transformed C3H10T1/2 cells (L. Tack, C. Cartwright, J. Wright, A. Srinivasan, W. Eckhart, K. Peden, and J. Pipas, J. Virol. 63:3362-3367, 1989). These results indicate that increases in specific phosphorylation sites in both T+ and p53+ correlate with the association of T with p53. The enhanced phosphorylation state may be a consequence of complex formation between T and p53 or reflect an increased affinity of p53 for highly phosphorylated forms of T.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号