首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Staphylococcus aureus is a significant human pathogen responsible for a range of diseases including pneumonia, sepsis, skin, and soft tissue infections. An important component of its success as a human pathogen is the production of a large array of virulence factors including several toxins. In this issue of EMBO Reports, Reyes‐Robles and colleagues 1 identify a glycine‐rich motif shared by bicomponent leukocidins. When this motif is deleted, the altered toxin exerts dominant‐negative effects that neutralize leukocidin function and thus represents a potentially novel avenue for S. aureus therapy.  相似文献   

2.
Staphylococcus aureus (S. aureus) strains cause several diseases in humans from minor skin infections to severe lethal infections. To explore the virulence determinants of this important microorganism, two clinical isolates of methicillin susceptible S. aureus (MSSA) and methicillin resistant S. aureus (MRSA) were subjected to proteomic analysis of their extracellular products using liquid chromatography–tandem mass spectrometry. The numbers of proteins identified in MSSA and MRSA extracellular products were 168 and 261; respectively, from them 117 were shared, while 144 proteins were unique to MRSA. The shared proteins, having a higher protein score with increased number of peptide matches in MRSA over MSSA, reflect the relatively active secretory state of MRSA rather than biased analytical variances. Characteristic determinants for MRSA were identified; mostly found to play a role in the virulence. We conclude that MRSA produces distinct proteins considered as its virulence determinants and we found that the shared extracellular products are more abundant in MRSA than MSSA that supporting the high invasiveness of MRSA over MSSA in pathogenesis.  相似文献   

3.
Staphylococcus aureus is an opportunistic pathogen causing various inflammatory diseases from skin and tissue local infections, to serious life threatening infections including endocarditis. Experimental models for endocarditis demonstrated that virulence factors of S. aureus, that are very important in infection of heart vegetations, are surface proteins which promote bacterial adherence. Until now, efforts to develop effective vaccines against S. aureus were unsuccessful, partly due to the fact that different vaccine formulations have targeted mainly B-cell immunity. Reverse vaccinology is applied here, in order to identify potential vaccine epitope candidates. The basic epitopes prediction strategy relied on detection of a common antigenic 9-mer epitope meant to be able to stimulate both the B-cell and T-cell mediated immunity. Ten surface exposed proteins were chosen for antigenicity testing. Using a web-based system, five T-cell epitopes corresponding to fibronectin binding protein A (FDFTLSNNV and YVDGYIETI), collagen adhesin (FSINYKTKI), serine-rich adhesin for platelets (LTFDSTNNT) and elastin binding protein (FAMDKSHPE) were selected as potential vaccine candidates. Epitopes sequences were found to be conserved among the different S. aureus genomes screened from NCBI GenBank. In vitro and in vivo immunological tests will be performed in order to validate the suitability of the epitopes for vaccine development.  相似文献   

4.
5.
6.
The genome sequence is the “blue-print of life,” but proteomics provides the link to the actual physiology of living cells. Because of their low complexity bacteria are excellent model systems to identify the entire protein assembly of a living organism. Here we show that the majority of proteins expressed in growing and non-growing cells of the human pathogen Staphylococcus aureus can be identified and even quantified by a metabolic labeling proteomic approach. S. aureus has been selected as model for this proteomic study, because it poses a major risk to our health care system by combining high pathogenicity with an increasing frequency of multiple antibiotic resistance, thus requiring the development of new anti-staphylococcal therapy strategies. Since such strategies will likely have to target extracellular and surface-exposed virulence factors as well as staphylococcal survival and adaptation capabilities, we decided to combine four subproteomic fractions: cytosolic proteins, membrane-bound proteins, cell surface-associated and extracellular proteins, to comprehensively cover the entire proteome of S. aureus. This quantitative proteomics approach integrating data ranging from gene expression to subcellular localization in growing and non-growing cells is a proof of principle for whole-cell physiological proteomics that can now be extended to address physiological questions in infection-relevant settings. Importantly, with more than 1700 identified proteins (and 1450 quantified proteins) corresponding to a coverage of about three-quarters of the expressed proteins, our model study represents the most comprehensive quantification of a bacterial proteome reported to date. It thus paves the way towards a new level in understanding of cell physiology and pathophysiology of S. aureus and related pathogenic bacteria, opening new avenues for infection-related research on this crucial pathogen.  相似文献   

7.
8.
Staphylococcus aureus is a major human pathogen and one of the more prominent pathogens causing biofilm related infections in clinic. Antibiotic resistance in S. aureus such as methicillin resistance is approaching an epidemic level. Antibiotic resistance is widespread among major human pathogens and poses a serious problem for public health. Conventional antibiotics are either bacteriostatic or bacteriocidal, leading to strong selection for antibiotic resistant pathogens. An alternative approach of inhibiting pathogen virulence without inhibiting bacterial growth may minimize the selection pressure for resistance. In previous studies, we identified a chemical series of low molecular weight compounds capable of inhibiting group A streptococcus virulence following this alternative anti-microbial approach. In the current study, we demonstrated that two analogs of this class of novel anti-virulence compounds also inhibited virulence gene expression of S. aureus and exhibited an inhibitory effect on S. aureus biofilm formation. This class of anti-virulence compounds could be a starting point for development of novel anti-microbial agents against S. aureus.  相似文献   

9.
Staphylococcus aureus is an intracellular bacterium responsible for serious infectious processes. This pathogen escapes from the phagolysosomal pathway into the cytoplasm, a strategy that allows intracellular bacterial replication and survival with the consequent killing of the eukaryotic host cell and spreading of the infection. S. aureus is able to secrete several virulence factors such as enzymes and toxins. Our recent findings indicate that the main virulence factor of S. aureus, the pore-forming toxin α-hemolysin (Hla), is the secreted factor responsible for the activation of an alternative autophagic pathway. We have demonstrated that this noncanonical autophagic response is inhibited by artificially elevating the intracellular levels of cAMP. This effect is mediated by RAPGEF3/EPAC (Rap guanine nucleotide exchange factor (GEF)3/exchange protein activated by cAMP), a cAMP downstream effector that functions as a GEF for the small GTPase Rap. We have presented evidence that RAPGEF3 and RAP2B, through calpain activation, are the proteins involved in the regulation of Hla and S. aureus-induced autophagy. In addition, we have found that both, RAPGEF3 and RAP2B, are recruited to the S. aureus–containing phagosome. Of note, adding purified α-toxin or infecting the cells with S. aureus leads to a decrease in intracellular cAMP levels, which promotes autophagy induction, a response that favors pathogen intracellular survival, as previously demonstrated. We have identified some key signaling molecules involved in the autophagic response upon infection with a bacterial pathogen, which have important implications in understanding innate immune defense mechanisms.  相似文献   

10.
11.
Staphylococcus aureus is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. The fibronectin binding protein A (FnBPA) of S. aureus is one of multifunctional ‘microbial surface components recognizing adhesive matrix molecules'' (MSCRAMMs). It is one of the most important adhesin molecules involved in the initial adhesion steps of S. aureus infection. It has been studied as potential vaccine candidates. However, FnBPA is a high-molecular-weight protein of 106 kDa and difficulties in achieving its high-level expression in vitro limit its vaccine application in S. aureus infection diseases control. Therefore, mapping the immunodominant regions of FnBPA is important for developing polyvalent subunit fusion vaccines against S. aureus infections. In the present study, we cloned and expressed the N-terminal and C-terminal of FnBPA. We evaluated the immunogenicity of the two sections of FnBPA and the protective efficacy of the two truncated fragments vaccines in a murine model of systemic S. aureus infection. The results showed recombinant truncated fragment F130-500 had a strong immunogenicity property and survival rates significantly increased in the group of mice immunized with F130-500 than the control group. We futher identified the immunodominant regions of FnBPA. The mouse antisera reactions suggest that the region covering residues 110 to 263 (F1B110-263) is highly immunogenic and is the immunodominant regions of FnBPA. Moreover, vaccination with F1B110-263 can generate partial protection against lethal challenge with two different S. aureus strains and reduced bacterial burdens against non-lethal challenge as well as that immunization with F130-500. This information will be important for further developing anti- S. aureus polyvalent subunit fusion vaccines.  相似文献   

12.
The gram-positive bacterium Staphylococcus aureus is a frequent component of the human microbial flora that can turn into a dangerous pathogen. As such, this organism is capable of infecting almost every tissue and organ system in the human body. It does so by actively exporting a variety of virulence factors to the cell surface and extracellular milieu. Upon reaching their respective destinations, these virulence factors have pivotal roles in the colonization and subversion of the human host. It is therefore of major importance to obtain a clear understanding of the protein transport pathways that are active in S. aureus. The present review aims to provide a state-of-the-art roadmap of staphylococcal secretomes, which include both protein transport pathways and the extracytoplasmic proteins of these organisms. Specifically, an overview is presented of the exported virulence factors, pathways for protein transport, signals for cellular protein retention or secretion, and the exoproteomes of different S. aureus isolates. The focus is on S. aureus, but comparisons with Staphylococcus epidermidis and other gram-positive bacteria, such as Bacillus subtilis, are included where appropriate. Importantly, the results of genomic and proteomic studies on S. aureus secretomes are integrated through a comparative “secretomics” approach, resulting in the first definition of the core and variant secretomes of this bacterium. While the core secretome seems to be largely employed for general housekeeping functions which are necessary to thrive in particular niches provided by the human host, the variant secretome seems to contain the “gadgets” that S. aureus needs to conquer these well-protected niches.  相似文献   

13.
14.
Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs), which analogously to outer membrane vesicles (OMVs) of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla) to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.  相似文献   

15.

Background

Staphylococcus aureus is an important pathogen in paediatric patients with bloodstream infections. The epidemiology of S. aureus bacteraemia, however, has not been well documented in children in South Africa.

Methods

A retrospective study was conducted at a children’s hospital in Cape Town, South Africa, to investigate the epidemiology of S. aureus bacteraemia from 2007-2011. The incidence, clinical presentation, risk factors, management and outcomes of methicillin sensitive S. aureus (MSSA) and methicillin resistant S. aureus (MRSA) bacteraemia were compared.

Results

Over the five year study period, 365 episodes of S. aureus bacteraemia were identified. The annual incidence was 3.28 cases per 1000 hospital admissions. MRSA was responsible for 26% of S. aureus bacteraemia and 72% of nosocomial infections. Only six possible cases of community-acquired MRSA infections were described. MSSA bacteraemia was more likely to present as pulmonary and bone or joint infections, while bacteraemia without a source was the most common presentation with MRSA.  Infants, children with malnutrition, and residents of long-term care facilities were at highest risk for MRSA bacteraemia. The overall case fatality rate for S. aureus bacteraemia was 8.8% over five years, with MRSA being the only significant risk factor for mortality.

Conclusion

The incidence of S. aureus bacteraemia and MRSA bacteraemia in children has remained stable over the past five years. MRSA is a predominantly nosocomial pathogen in children with S. aureus bacteraemia in Cape Town, South Africa.  相似文献   

16.
17.
Staphylococcus aureus is a microorganism that causes serious diseases in the human being. This microorganism is able to escape the phagolysosomal pathway, increasing intracellular bacterial survival and killing the eukaryotic host cell to spread the infection. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. We have shown that the pore-forming toxin α-hemolysin (Hla) is the S. aureus–secreted factor responsible for the activation of the autophagic pathway and that this response occurs through a PI3K/Beclin1-independent form. In the present report we demonstrate that cAMP has a key role in the regulation of this autophagic response. Our results indicate that cAMP is able to inhibit the autophagy induced by Hla and that PKA, the classical cAMP effector, does not participate in this regulation. We present evidence that EPAC and Rap2b, through calpain activation, are the proteins involved in the regulation of Hla-induced autophagy. Similar results were obtained in cells infected with different S. aureus strains. Interestingly, in this report we show, for the first time to our knowledge, that both EPAC and Rap2b are recruited to the S. aureus–containing phagosome. We believe that our findings have important implications in understanding innate immune processes involved in intracellular pathogen invasion of the host cell.  相似文献   

18.
Strains of Staphylococcus aureus, an important human pathogen, display up to 20% variability in their genome sequence, and most sequence information is available for human clinical isolates that have not been subjected to genetic analysis of virulence attributes. S. aureus strain Newman, which was also isolated from a human infection, displays robust virulence properties in animal models of disease and has already been extensively analyzed for its molecular traits of staphylococcal pathogenesis. We report here the complete genome sequence of S. aureus Newman, which carries four integrated prophages, as well as two large pathogenicity islands. In agreement with the view that S. aureus Newman prophages contribute important properties to pathogenesis, fewer virulence factors are found outside of the prophages than for the highly virulent strain MW2. The absence of drug resistance genes reflects the general antibiotic-susceptible phenotype of S. aureus Newman. Phylogenetic analyses reveal clonal relationships between the staphylococcal strains Newman, COL, NCTC8325, and USA300 and a greater evolutionary distance to strains MRSA252, MW2, MSSA476, N315, Mu50, JH1, JH9, and RF122. However, polymorphism analysis of two large pathogenicity islands distributed among these strains shows that the two islands were acquired independently from the evolutionary pathway of the chromosomal backbones of staphylococcal genomes. Prophages and pathogenicity islands play central roles in S. aureus virulence and evolution.  相似文献   

19.
Staphylococcus aureus has emerged as a significant pathogen causing severe invasive disease in otherwise healthy people. Despite considerable advances in understanding the epidemiology, resistance mechanisms, and virulence factors produced by the bacteria, there is limited knowledge of the in vivo host immune response to acute, invasive S. aureus infections. Herein, we report that peripheral blood mononuclear cells from patients with severe S. aureus infections demonstrate a distinctive and robust gene expression profile which is validated in a distinct group of patients and on a different microarray platform. Application of a systems-wide modular analysis framework reveals significant over-expression of innate immunity genes and under-expression of genes related to adaptive immunity. Simultaneous flow cytometry analyses demonstrated marked alterations in immune cell numbers, with decreased central memory CD4 and CD8 T cells and increased numbers of monocytes. CD14+ monocyte numbers significantly correlated with the gene expression levels of genes related to the innate immune response. These results demonstrate the value of applying a systems biology approach that reveals the significant alterations in the components of circulating blood lymphocytes and monocytes in invasive S. aureus infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号