首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional annotation of uncharacterized genes is the main focus of computational methods in the post genomic era. These tools search for similarity between proteins on the premise that those sharing sequence or structural motifs usually perform related functions, and are thus particularly useful for membrane proteins. Early responsive to dehydration (ERD) genes are rapidly induced in response to dehydration stress in a variety of plant species. In the present work we characterized function of Brassica juncea ERD4 gene using computational approaches. The ERD4 protein of unknown function possesses ubiquitous DUF221 domain (residues 312-634) and is conserved in all plant species. We suggest that the protein is localized in chloroplast membrane with at least nine transmembrane helices. We detected a globular domain of 165 amino acid residues (183-347) in plant ERD4 proteins and expect this to be posited inside the chloroplast. The structural-functional annotation of the globular domain was arrived at using fold recognition methods, which suggested in its sequence presence of two tandem RNA-recognition motif (RRM) domains each folded into βαββαβ topology. The structure based sequence alignment with the known RNA-binding proteins revealed conservation of two non-canonical ribonucleoprotein sub-motifs in both the putative RNA-recognition domains of the ERD4 protein. The function of highly conserved ERD4 protein may thus be associated with its RNA-binding ability during the stress response. This is the first functional annotation of ERD4 family of proteins that can be useful in designing experiments to unravel crucial aspects of stress tolerance mechanism.  相似文献   

2.
EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is rapidly induced in response to various abiotic and biotic stress stimuli in Arabidopsis (Arabidopsis thaliana). Modulation of ERD15 levels by overexpression or RNAi silencing altered the responsiveness of the transgenic plants to the phytohormone abscisic acid (ABA). Overexpression of ERD15 reduced the ABA sensitivity of Arabidopsis manifested in decreased drought tolerance and in impaired ability of the plants to increase their freezing tolerance in response to this hormone. In contrast, RNAi silencing of ERD15 resulted in plants that were hypersensitive to ABA and showed improved tolerance to both drought and freezing, as well as impaired seed germination in the presence of ABA. The modulation of ERD15 levels not only affected abiotic stress tolerance but also disease resistance: ERD15 overexpression plants showed improved resistance to the bacterial necrotroph Erwinia carotovora subsp. carotovora accompanied with enhanced induction of marker genes for systemic acquired resistance. We propose that ERD15 is a novel mediator of stress-related ABA signaling in Arabidopsis.  相似文献   

3.
4.
In this paper, we review experimental advances in molecular neurobiology of Alzheimer's disease (AD), with special emphasis on analysis of neural function of proteins involved in AD pathogenesis, their relation with several signaling pathways and with oxidative stress in neurons. Molecular genetic studies have found that mutations in APP, PS1 and PS2 genes and polymorphisms in APOE gene are implicated in AD pathogenesis. Recent studies show that these proteins, in addition to its role in beta-amyloid processing, are involved in several neuroplasticity-signaling pathways (NMDA-PKA-CREB-BDNF, reelin, wingless, notch, among others). Genomic and proteomic studies show early synaptic protein alterations in AD brains and animal models. DNA damage caused by oxidative stress is not completely repaired in neurons and is accumulated in the genes of synaptic proteins. Several functional SNPs in synaptic genes may be interesting candidates to explore in AD as genetic correlates of this synaptopathy in a "synaptogenomics" approach. Thus, experimental evidence shows that proteins implicated in AD pathogenesis have differential roles in several signaling pathways related to neuromodulation and neurotransmission in adult and developing brain. Genomic and proteomic studies support these results. We suggest that oxidative stress effects on DNA and inherited variations in synaptic genes may explain in part the synaptic dysfunction seen in AD.  相似文献   

5.
Dehydrins are a class of stress proteins that belong to the family of Late Embryogenesis Abundant (LEA) proteins in plants, so named because they are highly expressed in late stages of seed formation. In somatic cells, their expression is very low under normal conditions, but increases critically upon dehydration elicited by water stress, high salinity or cold. Dehydrins are thought to be intrinsically disordered proteins, which represents a challenge in understanding their structure–function relationship. Herein we present the backbone 1H, 15N and 13C NMR assignment of the 185 amino acid long ERD14 (Early Response to Dehydration 14), which is a K3S-type, typical dehydrin of A. thaliana. Secondary chemical shifts as well as NMR relaxation data show that ERD14 is fully disordered under near native conditions, with short regions of somewhat restricted motion and 5–25% helical propensity. These results suggest that ERD14 may have partially preformed elements for functional interaction with its partner(s) and set the stage for further detailed structural and functional studies of ERD14 both in vitro and in vivo.  相似文献   

6.
CBF/DREB是一类植物中特有的转录因子,在植物抵抗逆境胁迫过程中发挥重要功能。本研究从陆地棉(Gossypium hirsutum L.)Coker 312中克隆获得1个棉花CBF/DREB基因,命名为Gh CBF2,该基因编码一个由216个氨基酸组成的CBF蛋白。序列分析结果显示,Gh CBF2与其他植物的CBF蛋白类似,含有AP2转录因子典型的保守结构域。干旱或高盐胁迫处理明显增加了Gh CBF2基因的表达量。亚细胞定位分析结果发现Gh CBF2定位在细胞核中。将Gh CBF2基因构建到由35S启动子调控的植物表达载体p MD上并转化拟南芥(Arabidopsis thaliana L.),结果表明,在干旱和盐胁迫条件下,过量表达Gh CBF2基因拟南芥的成活率显著高于野生型,并且游离脯氨酸和可溶性糖含量也高于野生型,说明转Gh CBF2基因提高了拟南芥的耐盐抗旱能力。采用实时荧光定量PCR方法分析胁迫相关标记基因COR15A、RD29A和ERD6的表达情况,结果显示转基因株系中的表达量显著高于野生型,说明Gh CBF2参与调控拟南芥干旱和盐胁迫相关基因的表达。  相似文献   

7.
8.
植物非特异性脂质转移蛋白(non-specific lipid transfer proteins,nsLTP)是一类多基因家族编码碱性蛋白,负责脂肪酸体外结和与膜之间的磷脂转移,在植物生长发育和逆境胁迫响应中扮演着重要角色。目前为止,尚无模式植物毛果杨(Populus trichocarpansLTP家族的研究报导。本研究从全基因组水平对PtrnsLTP家族成员的基因数量、亲缘关系、基因结构、编码蛋白保守基序等特性进行了分析,结果表明:PtrnsLTP家族共由39个基因组成,进化成5个亚家族,其中A亚族含有6个基因、B亚族含有2个、C亚族含有13个、D亚族含有3个、E亚族含有15个。PtrnsLTP家族包含7对旁系同源基因,其中1对大于1,6对Ka/Ks均远小于1,且这6对基因均处于同一个大的进化分支上,进化压力的不同导致基因间的功能出现了分化,编码蛋白均含有Motif 1和 Motif 2保守基序。利用qRT-PCR技术并结合杨树转录组数据对PtrnsLTP的组织表达与盐胁迫响应特性研究发现:各家族成员在毛果杨根、茎和叶中均有表达且经qRT-PCR技术验证后与网站预测结果基本吻合,有11、15和13个成员分别在根、茎和叶中有较高的表达,表明该基因家族参与了杨树不同组织的生长发育;NaCl胁迫下,该家族39个基因中分别有26个成员在根部、14个成员在叶部表达量随着胁迫时间的增加而升高,而32个基因在茎部表现为先升高后降低的趋势。本研究结果对于PtrnsLTP家族基因生物学功能的鉴定与盐胁迫响应基因资源的工作有着积极的推动作用。  相似文献   

9.
Dehydrins are a family of proteins that accumulate in response to abiotic stresses. Little is known about the biochemical functions of these proteins. It is known that the Arabidopsis dehydrin, ERD14, is activated by phosphorylation to bind calcium and other ions. To begin to categorize the Arabidopsis dehydrins into functional families, we determined whether representative members of the dehydrin sub families share the properties of ERD14. When phosphorylated in vitro with casein kinase II; recombinant COR47, and ERD10 (and ERD14) become activated to bind calcium. ERD14 exhibited the highest calcium-binding activity followed by ERD10 and COR47. These dehydrins, when isolated from cold-treated Arabidopsis plants were also shown to have phosphorylation-dependent, calcium-binding activity. RAB18 showed very little calcium binding activity, even though it was phosphorylated by casein kinase II. XERO2 was not phosphorylated with CKII and did not bind calcium. Competition studies suggest that other divalent cations may bind to the dehydrins COR47, ERD10, and ERD14. Utilizing matrix-assisted laser desorption ionization – time of flight mass spectroscopy (MALDI-TOF), we determined that the poly serine region located in all three calcium-binding family members (COR47, ERD10, and ERD14) is the most likely phosphorylation site responsible for the activation of calcium binding. These results are consistent with a distinct biochemical function for the acidic subclass of dehydrins (COR47, ERD10, and ERD14) as ion (calcium)-interacting proteins.  相似文献   

10.
Multicellular organisms encounter environmental conditions that adversely affect protein homeostasis (proteostasis), including extreme temperatures, toxins, and pathogens. It is unclear how they use sensory signaling to detect adverse conditions and then activate stress response pathways so as to offset potential damage. Here, we show that dopaminergic mechanosensory neurons in C. elegans release the neurohormone dopamine to promote proteostasis in epithelia. Signaling through the DA receptor DOP‐1 activates the expression of xenobiotic stress response genes involved in pathogenic resistance and toxin removal, and these genes are required for the removal of unstable proteins in epithelia. Exposure to a bacterial pathogen (Pseudomonas aeruginosa) results in elevated removal of unstable proteins in epithelia, and this enhancement requires DA signaling. In the absence of DA signaling, nematodes show increased sensitivity to pathogenic bacteria and heat‐shock stress. Our results suggest that dopaminergic sensory neurons, in addition to slowing down locomotion upon sensing a potential bacterial feeding source, also signal to frontline epithelia to activate the xenobiotic stress response so as to maintain proteostasis and prepare for possible infection.  相似文献   

11.
InArabidopsis thaliana L., accumulation of abscisic acid (ABA) began to increase 2 h after plants had been subjected to dehydration stress and reached maximum levels after 10h. Differential hybridization was used to isolate 26Arabidopsis cDNAs with gene expression induced by a 1 h dehydration treatment. The cDNA clones were classified into 16 groups based on Southern blot hybridization, and named ERD (early-responsive todehydration) clones. Partial sequencing of the cDNA clones revealed that three ERDs were identical to those of HSP cognates (Athsp70-1, Athsp81-2, and ubiquitin extension protein). Dehydration stress strongly induced the expression of genes for the three ERDs, while application of ABA, which is known to act as a signal transmitter in dehydration-stressed plants, did not significantly affect the ERD gene expression. This result suggests that these HSP cognates are preferentially responsive to dehydration stress inA. thaliana, and that signaling pathways for the expression of these genes under conditions of dehydration stress are not mainly mediated by ABA. We also discuss the possible functions of these three ERD gene products against dehydration stress.  相似文献   

12.
Stress responses are adaptive cellular programs that identify and mitigate potentially dangerous threats. Misfolded proteins are a ubiquitous and clinically relevant stress. Trivalent metalloids, such as arsenic, have been proposed to cause protein misfolding. Using tandem mass tag-based mass spectrometry, we show that trivalent arsenic results in widespread reorganization of the cell from an anabolic to a catabolic state. Both major pathways of protein degradation, the proteasome and autophagy, show increased abundance of pathway components and increased functional output, and are required for survival. Remarkably, cells also showed a down-regulation of ribosomes at the protein level. That this represented an adaptive response and not an adverse toxic effect was indicated by enhanced survival of ribosome mutants after arsenic exposure. These results suggest that a major source of toxicity of trivalent arsenic derives from misfolding of newly synthesized proteins and identifies ribosome reduction as a rapid, effective, and reversible proteotoxic stress response.  相似文献   

13.
14.
15.
16.
Jojoba (Simmondsia chinensis (Link) Schnieder) was used to identify genes regulated by wound–water stress. Suppression subtractive hybridization (SSH) was performed using cDNAs prepared from wounded parts of leaves under drying stress as a tester and cDNAs from unstressed parts of leaves as a driver. A forward-subtracted cDNA library was constructed and positive clones were confirmed by differential screening, resulting in 1344 clones as wound–water stress induced. After sequencing and trimming, 838 sequences were further analyzed. Sequence assembly analysis generated 385 unique ESTs. By referring to NCBI database and the functional categories of Arabidopsis thaliana proteins, 139 ESTs in 13 main categories were annotated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to evaluate the functions of the ESTs and the pathways in which they are involved. Ninety-six genes were identified by KEGG Orthology (KO) identifier. These genes are involved in 63 pathways. Some pathways, such as energy metabolism, lipid metabolism, amino acid metabolism, translation, and MAPK signaling pathway, are associated with wound–water stress. The results from this study are useful in understanding the genetic regulation process under wound–water stress in jojoba.  相似文献   

17.
The mechanisms plants use to adapt to abiotic stress have been widely studied in a number of seed plants. Major research has been focused on the isolation of stress-responsive genes as a means to understand the molecular events underlying the adaptation process. To study stress-related gene regulation in the moss Physcomitrella patens we have isolated two cDNAs showing homology to highly conserved small hydrophobic proteins from different seed plants. The corresponding genes are up-regulated by dehydration, salt, sorbitol, cold and the hormone abscisic acid, indicating overlapping pathways are involved in the control of these genes. Based on the molecular characterization of the moss homologs we propose that signaling pathways in response to abiotic stress may have been altered during the evolution of land plants.Abbreviation ABA Abscisic acid - EST Expressed sequence tag  相似文献   

18.
19.
Functional analysis of TaDi19A, a salt-responsive gene in wheat   总被引:2,自引:0,他引:2  
A salinity stress upregulated expressed sequence tag (EST) was selected from a suppression subtractive hybridization cDNA library, constructed from the salinity-tolerant wheat cultivar Shanrong No. 3. Sequence analysis showed that the corresponding gene (named TaDi19A ) belonged to the Di19 family. TaDi19A was constitutively expressed in both the root and leaf of wheat seedlings grown under non-stressed conditions, but was substantially up-regulated by the imposition of stress (salinity, osmotic stress and cold), or the supply of stress-related hormones [abscisic acid (ABA) and ethylene]. The heterologous over-expression of TaDi19A in Arabidopsis thaliana increased the plants' sensitivity to salinity stress, ABA and mannitol during the germination stage. Root elongation in these transgenic lines showed a reduced tolerance to salinity stress and a reduced sensitivity to ethophon. The expression of the ABA signal pathway genes ABI1 , RAB18 , ERD15 and ABF3 , and SOS2 (SOS pathway) was altered in the transgenic lines. TaDi19A plays a role in the plant's response to abiotic stress, and some possible mechanisms of its action are proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号