首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We attempted to identify membrane proteins associated with the glycoconjugates and cell wall biosynthesis in the total membrane preparations of Aspergillus fumigatus. The total membrane preparations were first run on 1D gels, and then the stained gels were cut and submitted to in-gel digestion followed by 2D LC-MS/MS and database search. A total of 530 proteins were identified with at least two peptides detected with MS/MS spectra. Seventeen integral membrane proteins were involved in N-, O-glycosylation or GPI anchor biosynthesis. Nine membrane proteins were involved in cell wall biosynthesis. Eight proteins were identified as enzymes involved in sphingolipid synthesis. In addition, the proteins involved in cell wall and ergosterol biosynthesis can potentially be used as antifungal drug targets. Our method, for the first time, clearly provided a global view of the membrane proteins associated with glycoconjugates and cell wall biosynthesis in the total membrane proteome of A. fumigatus.  相似文献   

2.
Gross contraction in skeletal muscle is primarily determined by a relatively small number of contractile proteins, however this tissue is also remarkably adaptable to environmental factors1 such as hypertrophy by resistance exercise and atrophy by disuse. It thereby exhibits remodeling and adaptations to stressors (heat, ischemia, heavy metals, etc.)2,3. Damage can occur to muscle by a muscle exerting force while lengthening, the so-called eccentric contraction4. The contractile proteins can be damaged in such exertions and need to be repaired, degraded and/or resynthesized; these functions are not part of the contractile proteins, but of other much less abundant proteins in the cell. To determine what subset of proteins is involved in the amelioration of this type of damage, a global proteome must be established prior to exercise5 and then followed subsequent to the exercise to determine the differential protein expression and thereby highlight candidate proteins in the adaptations to damage and its repair. Furthermore, most studies of skeletal muscle have been conducted on the male of the species and hence may not be representative of female muscle. In this article we present a method for extracting proteins reproducibly from male and female muscles, and separating them by two-dimensional gel electrophoresis followed by high resolution digital imaging6. This provides a protocol for spots (and subsequently identified proteins) that show a statistically significant (p < 0.05) two-fold increase or decrease, appear or disappear from the control state. These are then excised, digested with trypsin and separated by high-pressure liquid chromatography coupled to a mass spectrometer (LC/MS) for protein identification (LC/MS/MS)5. This methodology (Figure 1) can be used on many tissues with little to no modification (liver, brain, heart etc.).  相似文献   

3.
4.
This study focuses on the impact of actin on adhesion and translocation of Enterococcus (E.) faecalis OG1RF, E. faecalis Symbioflor®, and E. faecalis V583. Insight into the role of actin aggregation in the mediation of bacterial adhesion and translocation was provided by a two-chamber translocation assay, which employed Ptk6 cells. Determination of translocation rates, cytochalasin D treatment, and laser scanning confocal microscopic observation revealed actin as a predominant brace for enterococci to pass through the epithelial cell layer. As the three enterococci had moderate adhesion ability to actin, actin-binding proteins were isolated and characterized by LC–MS/MS. The isolated proteins were identified as pyruvate formate lyase, enolase, glyceraldehyde-3-phosphate dehydrogenase, and GroEL. All these proteins belong to two major groups of moonlighting proteins, i.e., proteins, which display additional functions other than their described major biochemical catalysis. Both groups of moonlight proteins were determined to be associated with epithelial cell binding.  相似文献   

5.
Previous SDS PAGE gel analysis of the floral nectars from petunia and tobacco plants revealed significant differences in the protein patterns. Petunia floral nectar was shown to contain a number of RNase activities by in gel RNase activity assay. To identify these proteins in more detail, the bands with RNase activity were excised from gel and subjected to trypsin digestion followed by LC-MS/MS analysis. This analysis revealed that S-RNases accumulate in nectar from Petunia hybrida, where they should carry out a biological function different from self-pollen rejection. In addition, other proteins were identified by the LC-MS/MS analysis. These proteins include a peroxidase, an endochitinase, and a putative fructokinase. Each of these proteins contained a secretory signal sequence that marked them as potential nectar proteins. We developed RT-PCR assays for each of these five proteins and demonstrated that each of these proteins was expressed in the petunia floral nectary. A discussion of the role of these proteins in antimicrobial activity in nectar is presented.  相似文献   

6.
Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI MS) was applied to develop a proteomics-based method to detect and identify Neisseria species. Heat-inactivated clinical isolate cell suspensions of Neisseria gonorrhoeae and strains belonging to five serogroups (A, B, C, W135, and Y) of Neisseria meningitidis were subjected to on-probe protein/peptide extraction and tryptic digestion followed by AP-MALDI tandem MS (MS/MS)-based proteomic analysis. Amino acid sequences derived from three protonated peptides with m/z values of 1743.8, 1894.8, and 1946.8 were identified by AP-MALDI MS/MS and MASCOT proteome database search analysis as belonging to neisserial acyl carrier protein, neisserial-conserved hypothetical protein, and neisserial putative DNA binding protein, respectively. These three peptide masses can thus be potential biomarkers for neisserial species identification by AP-MALDI MS.  相似文献   

7.
Benzothiadiazole (BTH) is a structural analogue of salicylic acid (SA) which is widely recognized for its role in elicitation of systemic acquired resistance in a broad range of plant species. Here, BTH was applied to cell cultures of the bulbous ornamental plants Ornithogalum dubium and O. thyrsoides, showing a strong effect on rates of differentiation and morphogenesis. Morphogenic cell clusters in liquid Murashige and Skoog (MS) medium containing 1-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP) were used for all treatments. The calluses were washed thoroughly and activated with increasing concentrations of BTH. Following the induction, calli were grown on a solid MS medium without growth regulators (MS) or on a comparable media with NAA and BAP (M-206). The calli treated with BTH displayed a dose dependent increase in formation of meristematic centres followed by enhanced shoot formation compared to controls. Microscopic analyses revealed increased differentiation to cell organelles and a strengthening of the cell wall. A stronger response to BTH was observed in MS than in M-206 medium. A similar effect on calli differentiation was obtained by three weeks darkness followed by light exposure. The dark/light positive effect on differentiation was further augmented by BTH in a synergistic fashion. It is suggested that BTH enhances the rates of morphogenesis in Ornithogalum cultures by triggering a plant regulator-like activity.  相似文献   

8.
Echinococcus multilocularis is an important parasite that causes human alveolar echinococcosis. Identification and characterization of the proteins encoded by E. multilocularis metacestode might help to understand the complexity of the parasites and their interactions with the host, and to identify new candidates for immunodiagnosis and vaccine development. Here we present a proteomic analysis of E. multilocularis protoscolex (PSC) proteins. The proteins were resolved by 2-DE (pH range 3.5-10), followed by MALDI-TOF MS analysis. Fourteen known Echinococcus proteins were identified, including cytoskeletal proteins, heat shock proteins, metabolic enzymes, 14-3-3 protein, antigen P-29 and calreticulin. To construct a systematic reference map of the immunogenic proteins from E. multilocularis PSC, immunoblot analysis of PSC 2-DE maps was performed. Over 50 proteins spots were detected on immunoblots as antigens and 15 of them were defined. The results showed that cytoskeletal proteins and heat shock proteins were immunodominant antigens in alveolar echinococcosis.  相似文献   

9.
Mass spectrometry (MS) coupled with 1-D and 2-D electrophoresis can be utilized to detect and identify immunogenic proteins, but these methods are laborious and time-consuming. We describe an alternative, simple, rapid gel-free strategy to identify multiple immunogenic proteins from Bordetella pertussis (Bp). It couples immunoprecipitation to nano liquid chromatography- tandem mass spectrometry (IP-nLC-MS/MS) and is significantly both time- and labor-saving. We developed a gel-free magnetic bead-based immunoprecipitation (IP) method using different NP-40/PBS concentrations in which solubilized proteins of Bp Tohama I membrane fractions were precipitated with polyclonal rabbit anti-Bp whole cell immune sera. Immune complexes were analyzed by MS and Scaffold analysis (> 95% protein identification probability). Total immunoproteins identified were 50, 63 and 49 for 0.90%, 0.45% and 0.22% NP-40/PBS buffer concentrations respectively. Known Bp proteins identified included pertactin, serotype 2 fimbrial subunit and filamentous hemagglutinin. As proof of concept that this gel-free protein immunoprecipitation method enabled the capture of multiple immunogenic proteins, IP samples were also analyzed by SDS-PAGE and immunoblotting. Bypassing gels and subjecting immunoprecipitated proteins directly to MS is a simple and rapid antigen identification method with relatively high throughput. IP-nLC-MS/MS provides a novel alternative approach for current methods used for the identification of immunogenic proteins.  相似文献   

10.
We attempted to identify membrane proteins associated with the glycoconjugates and cell wall biosynthesis in the total membrane preparations of Aspergillus fumigatus. The total membrane preparations were first run on 1D gels, and then the stained gels were cut and submitted to in-gel digestion followed by 2D LC-MS/MS and database search. A total of 530 proteins were identified with at least two peptides detected with MS/MS spectra. Seventeen integral membrane proteins were involved in N-, O-glycosylation or GPI anchor biosynthesis. Nine membrane proteins were involved in cell wall biosynthesis. Eight proteins were identified as enzymes involved in sphingolipid synthesis. In addition, the proteins involved in cell wall and ergosterol biosynthesis can potentially be used as antifungal drug targets. Our method, for the first time, clearly provided a global view of the membrane proteins associated with glycoconjugates and cell wall biosynthesis in the total membrane proteome of A. fumigatus.  相似文献   

11.
The Staphylococcus aureus surface protein G (SasG) is an important mediator of biofilm formation in virulent S. aureus strains. A detailed analysis of its primary sequence has not been reported to date. SasG is highly abundant in the cell wall of the vancomycin-intermediate S. aureus strain HIP5827, and was purified and subjected to sequence analysis by MS. Data from MALDI-TOF and LC-MS/MS experiments confirmed the predicted N-terminal signal peptide cleavage site at residue A51 and the C-terminal cell wall anchor site at residue T1086. The protein was also derivatized with N-succinimidyloxycarbonyl-methyl-tris(2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to assess the presence of additional N-terminal sites of mature SasG. TMPP-derivatized SasG peptides featured m/z peaks with a 572 Da mass increase over the equivalent underivatized peptides. Multiple N-terminal peptides, all of which were observed in the 150 amino acid segment following the signal peptide cleavage at the residue A51, were characterized from MS and MS/MS data, suggesting a series of successive N-terminal truncations of SasG. A strategy combining TMPP derivatization, multiple enzyme digestions to generate overlapping peptides and detailed MS analysis will be useful to determine and understand functional implications of PTMs in bacterial cell wall-anchored proteins, which are frequently involved in the modulation of virulence-associated bacterial surface properties.  相似文献   

12.
Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.  相似文献   

13.
Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity.  相似文献   

14.
Bifidobacterium longum subsp. infantis is a common member of the intestinal microbiota in breast-fed infants and capable of metabolizing human milk oligosaccharides (HMO). To investigate the bacterial response to different prebiotics, we analyzed both cell wall associated and whole cell proteins in B. infantis. Proteins were identified by LC-MS/MS followed by comparative proteomics to deduce the protein localization within the cell. Enzymes involved in the metabolism of lactose, glucose, galactooligosaccharides, fructooligosaccharides and HMO were constitutively expressed exhibiting less than two-fold change regardless of the sugar used. In contrast, enzymes in N-Acetylglucosamine and sucrose catabolism were induced by HMO and fructans, respectively. Galactose-metabolizing enzymes phosphoglucomutase, UDP-glucose 4-epimerase and UTP glucose-1-P uridylytransferase were expressed constitutively, while galactokinase and galactose-1-phosphate uridylyltransferase, increased their expression three fold when HMO and lactose were used as substrates for cell growth. Cell wall-associated proteomics also revealed ATP-dependent sugar transport systems associated with consumption of different prebiotics. In addition, the expression of 16 glycosyl hydrolases revealed the complete metabolic route for each substrate. Mucin, which possesses O-glycans that are structurally similar to HMO did not induced the expression of transport proteins, hydrolysis or sugar metabolic pathway indicating B. infantis do not utilize these glycoconjugates.  相似文献   

15.
《Fungal biology》2014,118(9-10):785-791
A cellular proteomic analysis was performed on Trichoderma aggressivum f. europaeum. Thirty-four individual protein spots were excised from 2-D electropherograms and analysed by ESI-Trap Liquid Chromatography Mass Spectrometry (LC/MS). Searches of the NCBInr and SwissProt protein databases identified functions for 31 of these proteins based on sequence homology. A differential expression study was performed on the intracellular fraction of T. aggressivum f. europaeum grown in media containing Agaricus bisporus tissue and Phase 3 mushroom compost compared to a control medium. Differential expression was observed for seven proteins, three of which were upregulated in both treatments, two were down regulated in both treatments and two showed qualitatively different regulation under the two treatments. No proteins directly relating to fungal cell wall degradation or other mycoparasitic activity were observed. Functions of differentially produced intracellular proteins included oxidative stress tolerance, cytoskeletal structure, and cell longevity. Differential production of these proteins may contribute to the growth of T. aggressivum in mushroom compost and its virulence toward A. bisporus.  相似文献   

16.
17.
Zhang Y  Giboulot A  Zivy M  Valot B  Jamet E  Albenne C 《Phytochemistry》2011,72(10):1109-1123
Glycoproteomics recently became a very active field, mostly in mammals. The first part of this paper consists of a mini-review on the strategies used in glycoproteomics, namely methods for enrichment in glycoproteins and mass spectrometry (MS) techniques currently used. In a second part, these strategies are applied to the cell wall glycoproteome of etiolated hypocotyls of Arabidopsis thaliana, showing their complementarity. Several sub-glycoproteomes were obtained by: (i) affinity chromatography on concanavaline A (ConA) and analysis of glycoproteins by MALDI-TOF MS; (ii) multidimensional lectin chromatography (using AIL, PNA, ConA and WGA lectins) and subsequent identification of glycoproteins by MALDI-TOF MS and LC-MS/MS; (iii) boronic acid chromatography followed by identification of glycoproteins by MALDI-TOF MS. Altogether, 127 glycoproteins were identified. Most glycoproteins were found to be putative N-glycoproteins and N-glycopeptides were predicted from MS data using the ProTerNyc bioinformatics software.  相似文献   

18.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Metastasis is the major concern that causes death in HCC. The goal of this study was to identify tumor-derived proteins in serum during HCC metastasis using an orthotopic xenograft tumor model and explore the role of key protein in HCC metastasis. Serum samples collected from HCCLM3-R metastatic HCC tumor model at specific stages of metastasis (1 wk, 3 wks and 6 wks) were subjected to iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. Twenty tumor-derived proteins were identified through human specific peptides. Secretory clusterin (sCLU), which was significantly upregulated during cancer progression and metastasis, was chosen for further study. The expression of sCLU was significantly higher in metastatic HCC cell lines and samples from metastatic HCC patients. ShRNA-mediated down-regulation of sCLU resulted in a reduced migratory capacity in HCC cell lines, as well as a reduction in pulmonary metastasis in vivo. Overexpression of sCLU in HepG2 cell line showed increased cell migratory ability. Further study found that sCLU contributed to HCC migration and epithelial–mesenchymal transition (EMT) in vitro, and metastasis in vivo. In addition, sCLU also plays an important role in the regulation of TGF-β1-smad3 signaling. These findings suggest that sCLU may promote HCC metastasis via the induction of EMT process and may be a candidate target for HCC therapy.  相似文献   

19.
Paracoccidioides, a complex of several phylogenetic species, is the causative agent of paracoccidioidomycosis. The ability of pathogenic fungi to develop a multifaceted response to the wide variety of stressors found in the host environment is important for virulence and pathogenesis. Extracellular proteins represent key mediators of the host-parasite interaction. To analyze the expression profile of the proteins secreted by Paracoccidioides, Pb01 mycelia and yeast cells, we used a proteomics approach combining two-dimensional electrophoresis with matrix-assisted laser desorption ionization quadrupole time-of-flight mass spectrometry (MALDI-Q-TOF MS/MS). From three biological replicates, 356 and 388 spots were detected, in mycelium and yeast cell secretomes, respectively. In this study, 160 non-redundant proteins/isoforms were indentified, including 30 and 24 proteins preferentially secreted in mycelia and yeast cells, respectively. In silico analyses revealed that 65% of the identified proteins/isoforms were secreted primarily via non-conventional pathways. We also investigated the influence of protein export inhibition in the phagocytosis of Paracoccidioides by macrophages. The addition of Brefeldin A to the culture medium significantly decreased the production of secreted proteins by both Paracoccidioides and internalized yeast cells by macrophages. In contrast, the addition of concentrated culture supernatant to the co-cultivation significantly increased the number of internalized yeast cells by macrophages. Importantly, the proteins detected in the fungal secretome were also identified within macrophages. These results indicate that Paracoccidioides extracellular proteins are important for the fungal interaction with the host.  相似文献   

20.
Mycobacterium avium subsp. paratuberculosis is a pathogen which causes a debilitating chronic enteritis in ruminants. Unfortunately, the mechanisms that control M. avium subsp. paratuberculosis persistence during infection are poorly understood and the key steps for developing Johne's disease remain elusive. A proteomic analysis approach, based on one dimensional polyacrylamide gel electrophoresis (SDS-PAGE) followed by LC-MS/MS, was used to identify and characterize the cell wall associated proteins of M. avium subsp. paratuberculosis K10 and an cell surface enzymatic shaving method was used to determine the surface-exposed proteins. 309 different proteins were identified, which included 101 proteins previously annotated as hypothetical or conserved hypothetical. 38 proteins were identified as surface-exposed by trypsin treatment. To categorize and analyze these proteomic data on the proteins identified within cell wall of M. avium subsp. paratuberculosis K10, a rational bioinformatic approach was followed. The analyses of the 309 cell wall proteins provided theoretical molecular mass and p I distributions and determined that 18 proteins are shared with the cell surface-exposed proteome. In short, a comprehensive profile of the M. avium subsp. paratuberculosis K10 cell wall subproteome was created. The resulting proteomic profile might become the foundation for the design of new preventive, diagnostic and therapeutic strategies against mycobacterial diseases in general and M. avium subsp. paratuberculosis in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号