首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tropical regions, protozoan parasites can cause severe diseases with malaria, leishmaniasis, sleeping sickness, and Chagas disease standing in the forefront. Many of the drugs currently being used to treat these diseases have been developed more than 50 years ago and can cause severe adverse effects. Above all, resistance to existing drugs is widespread and has become a serious problem threatening the success of control measures. In order to identify new antiprotozoal agents, more than 600 commercial agrochemicals have been tested on the pathogens causing the above mentioned diseases. For all of the pathogens, compounds were identified with similar or even higher activities than the currently used drugs in applied in vitro assays. Furthermore, in vivo activity was observed for the fungicide/oomyceticide azoxystrobin, and the insecticide hydramethylnon in the Plasmodium berghei mouse model, and for the oomyceticide zoxamide in the Trypanosoma brucei rhodesiense STIB900 mouse model, respectively.  相似文献   

2.
Trypanothione synthetase is an essential enzyme for kinetoplastid parasites which cause highly disabling and fatal diseases in humans and animals. Inspired by the observation that N(5)-substituted paullones inhibit the trypanothione synthetase from the related parasite Leishmania infantum, we designed and synthesized a series of new derivatives. Although none of the new compounds displayed strong inhibition of Trypanosoma brucei trypanothione synthetase, several of them caused a remarkable growth inhibition of cultivated Trypanosoma brucei bloodstream forms. The most potent congener 3a showed antitrypanosomal activity in double digit nanomolar concentrations and a selectivity index of three orders of magnitude versus murine macrophage cells.  相似文献   

3.
We report on a diffusive analysis of the motion of flagellate protozoa species. These parasites are the etiological agents of neglected tropical diseases: leishmaniasis caused by Leishmania amazonensis and Leishmania braziliensis, African sleeping sickness caused by Trypanosoma brucei, and Chagas disease caused by Trypanosoma cruzi. By tracking the positions of these parasites and evaluating the variance related to the radial positions, we find that their motions are characterized by a short-time transient superdiffusive behavior. Also, the probability distributions of the radial positions are self-similar and can be approximated by a stretched Gaussian distribution. We further investigate the probability distributions of the radial velocities of individual trajectories. Among several candidates, we find that the generalized gamma distribution shows a good agreement with these distributions. The velocity time series have long-range correlations, displaying a strong persistent behavior (Hurst exponents close to one). The prevalence of “universal” patterns across all analyzed species indicates that similar mechanisms may be ruling the motion of these parasites, despite their differences in morphological traits. In addition, further analysis of these patterns could become a useful tool for investigating the activity of new candidate drugs against these and others neglected tropical diseases.  相似文献   

4.
A liquid medium was developed for the continuous cultivation of Trypanosoma cruzi. Among the several highly purified macromolecules tested only bovine liver catalase, horseradish peroxidase, lactoperoxidase, and bovine hemoglobin supported the continuous growth, at high yield, of mice-virulent Trypanosoma cruzi; other hemoproteins were inactive. Bovine liver catalase showed optimal Trypanosoma cruzi growth-promoting activity, parasites reaching 20 × 106 parasites/ml (95% epimastigotes) at about 10 days in most of the 45 subpassages to date. Furthermore, this protein in the incubation medium provided all the amino acid requirements of actively growing parasites, thus eliminating the need for exogeneous free amino acids. Additional experiments revealed that the hemoprotein's growth-promoting activity was independent of any enzymatic activity and that reconstituting the exact protein composition by means of exogeneous amino acids did not support parasite multiplication, suggesting the importance of the primary structure of the active proteins for growth-promoting activity. These active macromolecules supported the multiplication of five different strains of Trypanosoma cruzi, but did not support Leishmania brasiliensis or Leishmania mexicana proliferation, suggesting species specificity.  相似文献   

5.
The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites.  相似文献   

6.
The advances in microscopy combined to the invaluable progress carried by the utilization of molecular, immunological or immunochemical markers and the implementation of more powerful imaging technologies have yielded great improvements to the knowledge of the interaction between microorganisms and their hosts, notably a better understanding of the establishment of infectious processes. Still today, the intricacies of the dialog between parasites, cells and tissues remain limited. Some improvements have been attained with the stable integration and expression of the green fluorescence protein or firefly luciferase and other reporter genes, which have allowed to better approach the monitoring of gene expression and protein localization in vivo, in situ and in real time. Aiming at better exploring the well-established models of murine infections with the characterized strains of Trypanosoma cruzi and Trypanosoma vivax, we revisited in the present report the state of the art about the tools for the imaging of Trypanosomatids in vitro and in vivo and show the latest transgenic parasites that we have engineered in our laboratory using conventional transfection methods. The targeting of trypanosomes presented in this study is a promising tool for approaching the biology of parasite interactions with host cells, the progression of the diseases they trigger and the screening of new drugs in vivo or in vitro.  相似文献   

7.
We have previously shown that azasterols have activity against Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, which are the causative agents of various neglected tropical diseases. In this paper, we discuss the replacement of the sterol core of the azasterols with sterol mimics. Various mimics were designed, and the structures were minimised to see if they could adopt a similar conformation to that of the azasterols. From this, two series of mimics were synthesised and then evaluated against the parasites. Compounds showed moderate activity.  相似文献   

8.
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.  相似文献   

9.
10.
Several 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) have been validated as good drug targets for a large variety of diseases. Trypanosoma brucei PDEB1 (TbrPDEB1) has been designated as a promising drug target for the treatment of human African trypanosomiasis. Recently, the first class of selective nanomolar TbrPDEB1 inhibitors was obtained by targeting the parasite specific P-pocket. However, these biphenyl-substituted tetrahydrophthalazinone-based inhibitors did not show potent cellular activity against Trypanosoma brucei (T. brucei) parasites, leaving room for further optimization. Herein, we report the discovery of a new class of potent TbrPDEB1 inhibitors that display improved activities against T. brucei parasites. Exploring different linkers between the reported tetrahydrophthalazinone core scaffold and the amide tail group resulted in the discovery of alkynamide phthalazinones as new TbrPDEB1 inhibitors, which exhibit submicromolar activities versus T. brucei parasites and no cytotoxicity to human MRC-5 cells. Elucidation of the crystal structure of alkynamide 8b (NPD-048) bound to the catalytic domain of TbrPDEB1 shows a bidentate interaction with the key-residue Gln874 and good directionality towards the P-pocket. Incubation of trypanosomes with alkynamide 8b results in an increase of intracellular cAMP, validating a PDE-mediated effect in vitro and providing a new interesting compound series for further studies towards selective TbrPDEB1 inhibitors with potent phenotypic activity.  相似文献   

11.
G-strand binding protein 2 (GBP2) is a Ser/Arg-rich (SR) protein involved in mRNA surveillance and nuclear mRNA quality control in yeast. However, the roles of GBP2 in virulence and sexual development in Plasmodium parasites are unclear, although GBP2 is involved in the asexual development of Plasmodium berghei, the rodent malaria parasite. In this study, we investigated the role of GBP2 in virulence and sexual development of P. berghei using gbp2-deleted P. bergheigbp2 parasites). Then, to identify factors affected by gbp2 deletion, we performed a comparative proteomic analysis of the Δgbp2 parasites. We found that GBP2 was not associated with the development of experimental cerebral malaria during infection with P. berghei, but asexual development of the parasite was delayed with deletion of gbp2. However, the development of P. berghei gametocytes was significantly reduced with deletion of gbp2. Comparative proteomic analysis revealed that the levels of adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) in Δgbp2 parasites were significantly higher than those in wild-type (WT) parasites, suggesting that biosynthesis of purine nucleotides may be involved in function of GBP2. Therefore, we investigated the effect of purine starvation on the sexual development and proteome. In nt1-deleted P. bergheint1 parasites), the production of male and female gametocytes was significantly reduced compared to that in WT parasites. Moreover, we found that protein levels of GBP2 in Δnt1 parasites were markedly lower than in WT parasites. These findings suggest that GBP2 is primarily involved in the sexual development of malaria parasites, and its function may be suppressed by purine starvation.  相似文献   

12.
Trypanosomes are protozoan parasites of class Kinetoplastida. Trypanosoma vivax is one of the organisms that can cause Nagana and Trypanosoma evansi can cause Surra. In Africa, Trypanosoma vivax is mainly transmitted by Glossina spp. (tsetse fly) but it can be transmitted mechanically by other blood-feeding dipters. Trypanosoma evansi is transmitted mechanically and non-dependent to tsetse fly. In this research, T. vivax and T. evansi among camels (Camelus dromedarius) in Yazd, Iran were identified by microscopy and molecular examinations but the sensitivity of microscopy was lower than molecular examinations. Trypanosoma vivax and T. evansi were observed in 4 out of 134 blood film samples (2.98%). The prevalence of Trypanosoma spp. among 134 male camels (C. dromedarius) based on molecular examinations was 30.6% (22.76–38.44% with 95% confidence interval), 25 out of 134 (18.65%) had co-infection of T. evansi and T. vivax, and 16 out of 134 (11.94%) had an infection of T. vivax alone. We provided the first confirmation of infection with T. vivax among camels in Iran, and also in Asia, which has important implications on our knowledge of the occurrence and possible spread of this pathogen at the global level. Investigations in other species such as cattle and sheep are strongly recommended.  相似文献   

13.
Trypanosoma brucei subspecies cause African trypanosomiasis in humans and animals. These parasites possess genes encoding proteins with large tandem repeat (TR) domains as do the other trypanosomatid parasites. We have previously demonstrated that TR protein of Leishmania infantum and Trypanosoma cruzi are often targets of B-cell responses. However, African trypanosomes are susceptible to antibody-mediated immunity, and it may be detrimental for the parasites to have such B-cell antigens on the cell surface. Here we show TR proteins of T. brucei subspecies are also antigenic: recombinant TR proteins of these parasites detect antibodies in sera from mice infected with the parasites by ELISA. Analysis of amino acid sequences revealed that, different from TR proteins of Leishmania species or T. cruzi, the presence of predicted signal peptides, trans-membrane domains and GPI anchor signals in T. brucei TR proteins are significantly lower than those of the whole proteome. Many of the T. brucei TR proteins are specific in the species or conserved only in the closely related species, as is the same case for Leishmania major and T. cruzi. These results suggest that, despite their sharing some common characteristics, such abundance in large TR domains and immunological dominance, TR genes have evolved independently among the trypanosomatid parasites.  相似文献   

14.
15.
Malaria (Plasmodium spp.) and human African trypanosomiasis (Trypanosoma brucei spp.) are vector borne, deadly parasitic diseases. While chemotherapeutic agents for both diseases are available, difficulty in disease eradication and development of drug resistance require that new therapies targeting unexplored pathways or exploiting novel modes of action be developed. Intracellular Plasmodium and extracellular Trypanosoma brucei may have unique and essential requirements for divalent metal ions, beyond that deemed physiological for the host. Membrane Active Chelators (MACs), biologically active only in a hydrophobic lipid environment, are able to bind metal ions at elevated non-physiological concentrations in the vicinity of cell membranes. A dose–response relationship study using validated viability assays revealed that two MAC drugs, DP-b99 and DP-460, were cytotoxic for these parasites in vitro. The 50% effective concentration (EC50) values for DP-b99 and DP-460 were 87 μM and 39 μM for Trypanosoma brucei brucei and 21 μM and 28 μM for erythrocytic Plasmodium falciparum, respectively. Furthermore, drug potency was maintained for at least 24 h in serum containing medium at 37 °C. While the exact mechanism of action of MACs against intracellular malaria and extracellular African trypanosome parasites has yet to be determined, their potential as antiparasitic agents warrants further investigation.  相似文献   

16.
The endoplasmic reticulum membrane complex (EMC) is a versatile complex that plays a key role in membrane protein biogenesis in the ER. Deletion of the complex has wide-ranging consequences including ER stress, disturbance in lipid transport and organelle tethering, among others. Here we report the function and organization of the evolutionarily conserved EMC (TbEMC) in the highly diverged eukaryote, Trypanosoma brucei. Using (co-) immunoprecipitation experiments in combination with mass spectrometry and whole cell proteomic analyses of parasites after depletion of select TbEMC subunits, we demonstrate that the TbEMC is composed of 9 subunits that are present in a high molecular mass complex localizing to the mitochondrial-endoplasmic reticulum interface. Knocking out or knocking down of single TbEMC subunits led to growth defects of T. brucei procyclic forms in culture. Interestingly, we found that depletion of individual TbEMC subunits lead to disruption of de novo synthesis of phosphatidylcholine (PC) or phosphatidylethanolamine (PE), the two most abundant phospholipid classes in T. brucei. Downregulation of TbEMC1 or TbEMC3 inhibited formation of PC while depletion of TbEMC8 inhibited PE synthesis, pointing to a role of the TbEMC in phospholipid synthesis. In addition, we found that in TbEMC7 knock-out parasites, TbEMC3 is released from the complex, implying that TbEMC7 is essential for the formation or the maintenance of the TbEMC.  相似文献   

17.
It is often assumed that parasites are not virulent to their vectors. Nevertheless, parasites commonly exploit their vectors (nutritionally for example) so these can be considered a form of host. Trypanosoma cruzi, a protozoan found in mammals and triatomine bugs in the Americas, is the etiological agent of Chagas disease that affects man and domestic animals. While it has long been considered avirulent to its vectors, a few reports have indicated that it can affect triatomine fecundity. We tested whether infection imposed a temperature-dependent cost on triatomine fitness. We held infected insects at four temperatures between 21 and 30°C and measured T. cruzi growth in vitro at the same temperatures in parallel. Trypanosoma cruzi infection caused a considerable delay in the time the insects took to moult (against a background effect of temperature accelerating moult irrespective of infection status). Trypanosoma cruzi also reduced the insects’ survival, but only at the intermediate temperatures of 24 and 27°C (against a background of increased mortality with increasing temperatures). Meanwhile, in vitro growth of T. cruzi increased with temperature. Our results demonstrate virulence of a protozoan agent of human disease to its insect vector under these conditions. It is of particular note that parasite-induced mortality was greatest over the range of temperatures normally preferred by these insects, probably implying adaptation of the parasite to perform well at these temperatures. Therefore we propose that triggering this delay in moulting is adaptive for the parasites, as it will delay the next bloodmeal taken by the bug, thus allowing the parasites time to develop and reach the insect rectum in order to make transmission to a new vertebrate host possible.  相似文献   

18.
19.
20.
There are over 10,000 species of parasitic protozoa, a subset of which can cause considerable disease in humans. Here we examine in detail the complex immune response generated during infection with a subset of these parasites: Trypanosoma cruzi, Leishmania sp., Toxoplasma gondii, and Plasmodium sp. While these particular species perhaps represent the most studied parasites in terms of understanding how T cells function during infection, it is clear that the lessons learned from this body of work are also relevant to the other protozoa known to induce a CD8+ T cell response. This review will highlight some of the key studies that established that CD8+ T cells play a major role in protective immunity to protozoa, the factors that promote the generation as well as maintenance of the CD8+ T cell response during these infections, and draw attention to some of the gaps in our knowledge. Moreover, the development of new tools, including MHC-Class I tetramer reagents and the use of TCR transgenic mice or genetically modified parasites, has provided a better appreciation of how parasite specific CD8+ T cell responses are initiated and new insights into their phenotypic plasticity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号