首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in blood-related proteomics   总被引:15,自引:0,他引:15  
  相似文献   

2.
Many cellular signaling and communication events take place at the plasma membrane and thus the characterization of the plasma membrane proteome has been a hot research area in the hopes of learning more about these processes. Membrane microdomains are large protein and lipid complexes found on the cell surface membrane, able to concentrate or recruit signaling molecules or factors. The first step of any organelle proteomics study is to get a pure and enriched protein sample yet this has always been problematic in membrane proteomics as it is virtually impossible to purify a specific membrane type to homogeneity. In this review, we summarize the biochemical and proteomic approaches that have been used recently in the isolation and identification of several membrane microdomains and non-typical membrane proteins.  相似文献   

3.
Maize, sorghum, sugarcane, switchgrass and miscanthus are the main crops suggested as potential sources of lignocellulosic biomass for the production of second‐generation ethanol. The attention these crops have received has been concentrated in the field of genomics, and very little research has been performed in the field of proteomics, particularly in the cell wall proteomic, despite the importance of these crops in biofuel production. New mass spectrometry‐based proteomic methods allow the identification and quantification of thousands of proteins in complex mixtures, as well as the detection of post‐translational changes in complex proteomes, providing important insight into the downstream consequences of gene expression. Together with other ‘omic’ approaches, proteomic might be decisive to bring new information in the study of cell wall formation. Here, we briefly highlight proteomic techniques and review the research that has been completed on the proteomes of these five crops.  相似文献   

4.
Xiao H  Wong DT 《Bioinformation》2010,5(7):294-296
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

5.
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

6.
Proteomics has revolutionized protease research and particularly contributed to the identification of novel substrates and their sites of cleavage as key determinants of protease function. New technologies and rapid advancements in development of powerful mass spectrometers allowed unprecedented insights into activities of matrix metalloproteinases (MMPs) within their complex extracellular environments. Mass spectrometry-based proteomics extended our knowledge on MMP cleavage specificities and will help to develop more specific inhibitors as new therapeutics. Quantitative proteomics and N-terminal enrichment strategies have revealed numerous novel MMP substrates and shed light on their modes of action in vitro and in vivo. In this review, we provide an overview of current proteomic technologies in protease research and their application to the functional characterization of MMPs.  相似文献   

7.
Neuroproteomics has become a ‘symbol’ or even a ‘sign’ for neuroscientists in the post-genomic era. During the last several decades, a number of proteomic approaches have been used widely to decipher the complexity of the brain, including the study of embryonic stages of human or non-human animal brain development. The use of proteomic techniques has allowed for great scientific advancements, including the quantitative analysis of proteomic data using 2D-DIGE, ICAT and iTRAQ. In addition, proteomic studies of the brain have expanded into fields such as subproteomics, synaptoproteomics, neural plasma membrane proteomics and even mitochondrial proteomics. The rapid progress that has been made in this field will not only increase the knowledge based on the neuroproteomics of the developing brain but also help to increase the understanding of human neurological diseases. This paper will focus on proteomic studies in the central nervous system and especially those conducted on the development of the brain in order to summarize the advances in this rapidly developing field.  相似文献   

8.
Several genomics-based techniques have been applied in the last decade to the molecular characterization of cancer, which has led to a variety of applications suitable for improved diagnosis, prognosis and prediction of outcome to treatment. Proteomics-based approaches have also been seen as crucial to the discovery of biomarkers for early diagnosis and prognosis of tumors, as well as for a better understanding of the molecular bases of cancer. Accordingly, proteomic techniques have been used extensively for a better molecular characterization of thyroid tumors. In this field, three main directions have been preceded: first, proteomic studies of model systems; second, proteomics of thyroid tumor specimens; and third, serum proteomics. In this review, we describe the most relevant results that have been obtained for tumors derived from thyroid follicular cells using various proteomic approaches.  相似文献   

9.
Advances in proteomics technology offer great promise in the understanding and treatment of the molecular basis of disease. The past decade of proteomics research, the study of dynamic protein expression, post-translational modifications, cellular and sub-cellular protein distribution, and protein-protein interactions, has culminated in the identification of many disease-related biomarkers and potential new drug targets. While proteomics remains the tool of choice for discovery research, new innovations in proteomic technology now offer the potential for proteomic profiling to become standard practice in the clinical laboratory. Indeed, protein profiles can serve as powerful diagnostic markers, and can predict treatment outcome in many diseases, in particular cancer. A number of technical obstacles remain before routine proteomic analysis can be achieved in the clinic; however the standardisation of methodologies and dissemination of proteomic data into publicly available databases is starting to overcome these hurdles. At present the most promising application for proteomics is in the screening of specific subsets of protein biomarkers for certain diseases, rather than large scale full protein profiling. Armed with these technologies the impending era of individualised patient-tailored therapy is imminent. This review summarises the advances in proteomics that has propelled us to this exciting age of clinical proteomics, and highlights the future work that is required for this to become a reality.  相似文献   

10.
The genome sequence is the “blue-print of life,” but proteomics provides the link to the actual physiology of living cells. Because of their low complexity bacteria are excellent model systems to identify the entire protein assembly of a living organism. Here we show that the majority of proteins expressed in growing and non-growing cells of the human pathogen Staphylococcus aureus can be identified and even quantified by a metabolic labeling proteomic approach. S. aureus has been selected as model for this proteomic study, because it poses a major risk to our health care system by combining high pathogenicity with an increasing frequency of multiple antibiotic resistance, thus requiring the development of new anti-staphylococcal therapy strategies. Since such strategies will likely have to target extracellular and surface-exposed virulence factors as well as staphylococcal survival and adaptation capabilities, we decided to combine four subproteomic fractions: cytosolic proteins, membrane-bound proteins, cell surface-associated and extracellular proteins, to comprehensively cover the entire proteome of S. aureus. This quantitative proteomics approach integrating data ranging from gene expression to subcellular localization in growing and non-growing cells is a proof of principle for whole-cell physiological proteomics that can now be extended to address physiological questions in infection-relevant settings. Importantly, with more than 1700 identified proteins (and 1450 quantified proteins) corresponding to a coverage of about three-quarters of the expressed proteins, our model study represents the most comprehensive quantification of a bacterial proteome reported to date. It thus paves the way towards a new level in understanding of cell physiology and pathophysiology of S. aureus and related pathogenic bacteria, opening new avenues for infection-related research on this crucial pathogen.  相似文献   

11.
ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.  相似文献   

12.
Introduction: Plasma proteomics has been extensively utilized for studies that investigate various disease settings (e.g. cardiovascular disease), as well as to monitor the effect of pharmaceuticals on the plasma proteome (e.g. chemotherapy). However, plasma proteomic studies focusing on children represent a very small proportion of the plasma proteomic studies completed to date. Early disease detection and prevention is critical in pediatrics, as children must live with the disease outcomes for many years and often carry negative outcomes into adulthood. Pediatrics represents an area of plasma proteomics that is about to undergo a significant expansion.

Areas covered: This review is based on a PubMed search focusing on five keywords that are plasma, biomarkers, pediatric, proteomics, and children. It is a comprehensive summary of plasma proteomic studies specific to the pediatric patient and discusses aspects such as the clinical setting, sample size, methodological approaches and outlines the significance of the findings.

Expert commentary: Plasma proteomics is expanding significantly as a result of major advancements in proteomic technology. This is in synergy with the growing focus on true early disease detection and prevention in early life. We are about to see a new era of advanced medical science built from pediatric proteomics.  相似文献   


13.
Biological fluid sample collection often includes the risk of blood contamination that may alter the proteomic profile of biological fluid. In proteomics studies, exclusion of contaminated samples is usually based on visual inspection and counting of red blood cells in the sample; analysis of specific blood derived proteins is less used. To fill the gap, we developed a fast and sensitive method for ascertainment of blood contamination in crude biological fluids, based on specific blood-derived protein, hemoglobin detection by MALDI-TOF MS. The MALDI-TOF MS based method allows detection of trace hemoglobin with the detection limit of 0.12 nM. UV-spectrometry, which was used as reference method, was found to be less sensitive. The main advantages of the presented method are that it is fast, effective, sensitive, requires very small sample amount and can be applied for detection of blood contamination in various biological fluids collected for proteomics studies. Method applicability was tested on human cerebrospinal and follicular fluid, which proteomes generally do not contain hemoglobin, however, which possess high risk for blood contamination. Present method successfully detected the blood contamination in 12 % of cerebrospinal fluid and 24 % of follicular fluid samples. High percentage of contaminated samples accentuates the need for initial inspection of proteomic samples to avoid incorrect results from blood proteome overlap.  相似文献   

14.
This article examines processes involved in blood donation and 'blood management' in an anthropological light. It claims that blood management is not restricted to the procedures that medical professionals employ on blood outside of bodies, but that 'management' practice is enforced by donors themselves onto their own internal bodily processes. It suggests that donation and transfusion centre on issues of time-management and production; concepts of temporal synchrony and investment are employed to explore the implications of this dimension of blood donation. By way of a comparison with gift-giving amongst Jains in India, this article argues for an 'overlapping' of – and dependency between – different economies within blood-banking processes. In examining the general processes involved in blood donation, it aims to provide the groundwork for future comparative analyses of blood-banking processes.  相似文献   

15.
As the only truly domesticated insect, the silkworm not only has great economic value, but it also has value as a model for genetics and molecular biology research. Genomics and proteomics have recently shown vast potential to be essential tools in domesticated silkworm research, especially after the completion of the Bombyxmori genome sequence. This paper reviews the progress of the domesticated silkworm genome, particularly focusing on its genetic map, physical map and functional genome. This review also presents proteomics, the proteomic technique and its application in silkworm research.  相似文献   

16.
蛋白质组学是后基因组时代研究的热点领域之一,自从蛋白质组这个概念被提出以来,其研究一直受到广泛关注,其研究技术也有了极大地进步。植物时刻都面临各种非生物胁迫,包括干旱、冷、盐、金属等,在长期进化过程中,植物形成独特的机制来响应逆境,然而目前对于植物如何适应逆境的分子机制尚未完全阐明。因此蛋白质组学作为一种强有力的研究技术手段,将为研究植物响应胁迫的分子机制提供理论支撑。介绍了蛋白质组学的产生背景、研究技术手段及植物在各种胁迫条件下的蛋白质组学研究、植物亚细胞器的蛋白质组学研究状况,同时对植物蛋白质组学的发展前景进行了展望。  相似文献   

17.
18.
Nowadays, proteomics is recognized as one of the fastest growing tools in many areas of research. This is especially true for the study of Saccharomyces cerevisiae, as it is considered to be a model organism for eukaryotic cells. Proteomic analysis provides an insight into global protein expressions from identification to quantitation, from localization to function, and from individual to network systems. Moreover, many methods for identification and quantitation of proteins based on tandem mass spectrometry workflows have recently been developed and widely applied in S. cerevisiae. The current methods and issues in the proteomic analysis of S. cerevisiae are reviewed here.  相似文献   

19.
Understanding biology at the systems level is a powerful method for discovery of previously unrecognized molecular pathways and mechanisms in human disease. The application of proteomics to arthritis research has lagged behind many other clinical targets, partly due to the unique biochemical properties of cartilage and associated biological fluids such as synovial fluid. In recent years, however, proteomic-based studies in cartilage and arthritis research have risen sharply and have started to make a significant impact on our understanding of joint disease, including the discovery of new and promising biomarkers of cartilage degeneration, a hallmark of arthritis. In this review we will make the case for the ongoing proteomic analysis of cartilage and other tissues affected by joint disease, overview some of the core proteomic techniques and discuss how the challenge of cartilage proteomics has been met through technical innovation. The major outcomes and information obtained from recent proteomic analysis of synovial fluid, cartilage and chondrocytes will also be described. In addition, we present some novel insights into post-translational regulation of cartilage proteins, through proteomic identification of proteolytic fragments in mouse cartilage extracts and explant culture media. We conclude with our prediction of how emerging proteomic technologies that have yet to be applied in arthritis research are likely to contribute further important information.  相似文献   

20.
Within recent years, the advances in proteomics techniques have resulted in considerable novel insights into the protein expression patterns of specific tissues, cells, and organelles. The information acquired from large-scale proteomics approaches indicated, however, that the proteomic analysis of whole cells or tissues is often not suited to fully unravel the proteomes of individual organellar constituents or to identify proteins that are present at low copy numbers. In addition, the identification of hydrophobic proteins is still a challenge. Therefore, the development of techniques applicable for the enrichment of low-abundance membrane proteins is essential for a comprehensive proteomic analysis. In addition to the enrichment of particular subcellular structures by subcellular fractionation, the spectrum of techniques applicable for proteomics research can be extended toward the separation of integral and peripheral membrane proteins using organic solvents, detergents, and detergent-based aqueous two-phase systems with water-soluble polymers. Here, we discuss the efficacy of a number of experimental protocols. We demonstrate that the appropriate selection of physicochemical conditions results in the isolation of synaptic vesicles of high purity whose proteome can be subfractionated into integral membrane proteins and soluble proteins by several phase separation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号