首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitinases are a class of ubiquitous proteins that are widely distributed in plants. Defense is the major natural role for chitinases, primarily against fungal pathogens. Little is known regarding their non-defensive roles in seeds. In this study, a new class III chitinase from pomegranate seeds (pomegranate seed chitinase, PSC) was isolated and purified to homogeneity. The native state of PSC is a monomer with a molecular weight of approximately 30 kDa. This chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a calcium storage protein. Consistent with this idea, its amino acid sequence (inferred from cDNA) is rich in acidic amino acid residues, especially Asp, similar to reported calcium storage proteins. The presence of calcium considerably improves the stability of the protein but has little effect on its enzymatic activity. Transmission electron microscopy analyses indicate that, similar to phytoferritin, this enzyme is widely distributed in the stroma of amyloplasts of the embryonic cells, suggesting that amyloplasts in seeds could serve as an alternative plastid for calcium storage. Indeed, the transmission electron microscopy results showed that, within the embryonic cells, calcium ions are mainly distributed in the stroma of the amyloplasts, consistent with a role for PSC in calcium storage. Thus, the plant appears to have evolved a new plastid for calcium storage in seeds. During seed germination, the content of this enzyme decreases with time, suggesting that it is involved in the germination process.  相似文献   

2.
A soybean chitinase which has an apparent molecular mass of 28 kDa by SDS-PAGE, and has chitinase specific activity of 133 units per mg protein at pH 5.2 and an apparent pI of 5.7, was purified from mature dry seeds. Based upon the selected part (the residue positions 10–17) of the determined N-terminal 38 amino acid sequence, a 23-mer degenerate oligonucleotide was synthesized and used for the PCR cloning of the chitinase cDNA. The resulting 1340 bp cDNA was comprised of a 5-untranslated region of 39 bases, a coding region corresponding to a 25 amino acid signal sequence, followed by a mature 308 amino acid sequence (calculated molecular mass 34269, calculated pI 4.7), and a 235 nucleotide 3-terminal untranslated region including 24 bases of the poly(A) tail. By comparing the deduced primary sequence with those of plant chitinases known to date, this enzyme was more than 50% identical to every class III acidic chitinase, but has no significant similarity to other families of chitinases. The comparison also showed that the C-termininal region of this chitinase is markedly extended, by at least 31 residues. Northern blot analysis demonstrated that this mRNA species is remarkably transcribed from the early stage until the late middle stage of seed development, whilst it is hardly expressed in the leaves and the stems of soybean. Spatial and temporal expression of this single gene imply that this class III chitinase is mainly devoted to the seed defense, not only in development but also in dormancy of soybean seed. This is the first reported isolation and cDNA cloning of a class III acidic endochitinase from seeds. According to the chitinase nomenclature we propose that this enzyme would be classified into a new class of chitinase PR-8 family, together with a Sesbania homologue.  相似文献   

3.
A chitinase was purified from the seeds of Benincasa hispida, a medicinal plant also called white gourd, and a member of the Cucurbitaceae family. Purification was done by using a procedure consisting of only two fractionation steps: an acid denaturation step followed by ion-exchange chromatography. The sequence of the N-terminal forty amino acid residues was analyzed and the sequence indicated that the enzyme is a class III chitinase. The enzyme, which is a basic chitinase, is one of at least five chitinases detected in the seed extract of B. hispida. Like other class III chitinases, this enzyme also has lysozyme activity. A genomic clone of the gene encoding the enzyme was isolated and sequenced. The gene has the potential to encode a protein of 301 amino acid residues. The deduced amino acid sequence of the protein, as expected from the N-terminal amino acid sequence, shares high degrees of similarity with other class III chitinases.  相似文献   

4.
A typical soybean (Glycine max) plant assimilates nitrogen rapidly both in active root nodules and in developing seeds and pods. Oxaloacetate and 2-ketoglutarate are major acceptors of ammonia during rapid nitrogen assimilation. Oxaloacetate can be derived from the tricarboxylic acid (TCA) cycle, and it also can be synthesized from phosphoenolpyruvate and carbon dioxide by phosphoenolpyruvate carboxylase. An active malate dehydrogenase is required to facilitate carbon flow from phosphoenolpyruvate to oxaloacetate. We report the cloning and sequence analyses of a complete and novel malate dehydrogenase gene in soybean. The derived amino acid sequence was highly similar to the nodule-enhanced malate dehydrogenases from Medicago sativa and Pisum sativum in terms of the transit peptide and the mature subunit (i.e., the functional enzyme). Furthermore, the mature subunit exhibited a very high homology to the plastid-localized NAD-dependent malate dehydrogenase from Arabidopsis thaliana, which has a completely different transit peptide. In addition, the soybean nodule-enhanced malate dehydrogenase was abundant in both immature soybean seeds and pods. Only trace amounts of the enzyme were found in leaves and nonnodulated roots. In vitro synthesized labeled precursor protein was imported into the stroma of spinach chloroplasts and processed to the mature subunit, which has a molecular mass of ~34 kDa. We propose that this new malate dehydrogenase facilitates rapid nitrogen assimilation both in soybean root nodules and in developing soybean seeds, which are rich in protein. In addition, the complete coding region of a geranylgeranyl hydrogenase gene, which is essential for chlorophyll synthesis, was found immediately upstream from the new malate dehydrogenase gene.  相似文献   

5.
Chitinases (EC 3.2.1.14) are hydrolytic enzymes found in different organisms. In plants, they have been described in different tissues and organs, including seeds. This study was triggered by the isolation of a 30-kDa thermostable chitinase from Adenanthera pavonina L. seeds. The enzyme was submitted to N-terminal amino acid sequencing, and the analysis revealed a high degree of homology with class III chitinases. Bidimensional electrophoresis of the 30-kDa band showed the presence of three isoforms with pIs of 5.2, 5.5 and 5.8. A chitinase was also found in exudates released from the same seeds, which was seen to be immunorelated to the above 30-kDa protein. It was also submitted to N-terminal amino acid sequencing and seen as highly homologous to class III chitinases. In addition, the expression of chitinases during A. pavonina L. seed germination and seedling development was investigated. Seeds were allowed to germinate in the absence of light for approximately 5 days and were grown, for different times, in the absence or presence of light. After each seedling developmental time, samples of exudates, roots and cotyledonary leaves were collected and submitted to protein extraction. The presence of proteins immunorelated to the 30-kDa chitinase was detected in all analyzed samples. Further analyses showed that light significantly interfered with the chitinase expression in some organs. The tissue and subcellular chitinase location in seedling roots was also investigated, and it was majorly localized in the cell wall and in the intercellular spaces of the root hair zone.  相似文献   

6.
Compositional studies comparing transgenic with non-transgenic counterpart plants are almost universally required by governmental regulatory bodies. In the present study, two T2 transgenic cotton lines containing chitinase (Line 11/57) and Bt lines (Line 61) were compared with non-transgenic counterpart. To do this, biochemical characteristics of leaves and seeds, including amino acids, fatty acids, carbohydrates, anions, and cations contents of the studied lines were analyzed using GC/MS, high-performance liquid chromatography (HPLC), and ion chromatography (IC) analyzers, respectively. polymerase chain reaction (PCR) and Western blot analyses confirmed the presence and expression of Chi and Bt genes in the studied transgenic lines. Although, compositional analysis of leaves contents confirmed no significant differences between transgenic and non-transgenic counterpart lines, but it was shown that glucose content of chitinase lines, fructose content of transgenic lines (Bt and chitinase) and asparagine and glutamine of chitinase lines were significantly higher than the non-transgenic counterpart plants. Both the transgenic lines (Bt and chitinase) showed significant decrease in the amounts of sodium in comparison to the non-transgenic counterpart plants. The experiments on the seeds showed that histidine, isoleucine, leucine, and phenylalanine contents of all transgenic and non-transgenic lines were the same, whereas other amino acids were significantly increased in the transgenic lines. Surprisingly, it was observed that the concentrations of stearic acid, myristic acid, oleic acid, and linoleic acid in the chitinase line were significantly different than those of non-transgenic counterpart plants, but these components were the same in both Bt line and its non-transgenic counterpart. It seems that more changes observed in the seed contents than leaves is via this point that seeds are known as metabolites storage organs, so they show greater changes in the metabolites contents comparing to the leaves.  相似文献   

7.
A soybean seed-specific PR-8 chitinase, named Chib2, has a markedly extended C-terminal segment compared to other plant Chib1 homologues of the PR-8 chitinase family known to date. To further characterize the molecular structure and the expression pattern of this chitinase family, we cloned two typical Chib1-similar cDNAs (Chib1-1 and Chib1-2) from soybeans by PCR-cloning techniques. The deduced primary sequence of Chib1-1 chitinase is composed of a signal peptide segment (26 amino acid residues) and a mature 273 amino acid sequence (calculated molecular mass 28,794, calculated pI 3.7). This Chib1-1 enzyme is more than 90% identical to Chib1-2 chitinase but is below 50% identical to Chib2 enzyme. Thus, we confirmed the occurrence of two distinct classes, Chib1 and Chib2 in the plant PR-8 chitinase family. The Chib1 genes, interrupted by one intron, were found to be up-regulated in response to ethylene in stems and leaves, but scarcely expressed in developing soybean seeds. Chib1 chitinases may be responsible for protecting the plant body from various pathogenic attacks.  相似文献   

8.
Basic chitinases are correlated with the morphogenic response of flax cells   总被引:4,自引:0,他引:4  
Flax ( Linum usitatissimum ) hypocotyl protoplasts immobilized in a calcium‐alginate matrix give rise to embryo‐like structures. A direct correlation was established between the presence of a set of ionically‐bound cell wall proteins, which includes the basic polypeptides P184 and P183 with an apparent molecular mass of 25 kDa, and this morphogenic response. Microsequencing of tryptic fragments from P184 and P183 indicated homologies with the chitinase family. These homologies were confirmed by demonstrating that, after renaturation, such proteins express a potential chitinase activity in SDS‐PAGE gel containing glycol chitin as synthetic substrate. Using degenerate primers from P184 internal sequences, we isolated one partial genomic sequence of a chitinase of 626 bp from which a putative 74‐amino acid sequence, disrupted by one intron, was deduced. High degrees of homology with several plant chitinases, including those expressed during somatic embryogenesis or in seeds, were observed. P184 microsequences match the corresponding sequence deduced from the chitinase PCR‐fragment perfectly.  相似文献   

9.
Chitinases (E.C.3.2.1.14) are thought to play an important role in the defense of plants against fungal invasion. By screening a barley genomic library with a previously identified chitinase eDNA clone (clone 10), a genomic clone was isolated and characterized by DNA sequencing of the chitinase coding region and flanking sequences. This clone contains an open reading frame capable of coding for a 34 kD chitinase. Comparison of the amino acid sequence of the encoded protein with other barley chitinases suggests that the genomic clone encodes chitinase T, which has been characterized extensively by protein sequencing. Treatment of barley leaves and aleurone protoplasts with N-acetyl glucosamine oligomers which act as elicitors in other plants, did not lead to the elevation of the levels of the chitinases. However, infection of barley seedlings with the powdery mildew fungus, Erysiphe graminis, resulted in the induction of several isoforms of chitinase. The level and number of chitinase isozymes was correlated with the severity of infection. The infection-related chitinases found in barley leaves are different from those found in seeds.  相似文献   

10.
Chitinase isolated from Zea mays seeds is inactivated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in the absence of exogenous nucleophiles. Oligomers of N-acetylglucosamine,N,N',N",N"'-tetra-N-acetylchitotetraose (GlcNAc4), and to a lesser extent, N,N',N"-tri-N-acetylchitotriose (GlcNAc3) and N,N'-di-N-acetylchitobiose (GlcNAc2) provide partial protection against inactivation by the reagent. An examination of the concentration dependence of the protection afforded by GlcNAc4 revealed direct competition between the substrate analog and the reagent for the same binding sites on the enzyme. Isolation and Edman degradation of a "new" tryptic fragment, observed after inactivation of chitinase with EDC, revealed the sequence G-P-L-Q-I-S-W-N-*-N-Y-G-P-A-G-R, where the asterisk represents a cycle in which no amino acid was detected, presumably as a consequence of derivatization with EDC. In basic chitinases from dicotyledonous plants such as Arabidopsis thaliana, Phaseolis vulgaris (bean), Nicotiana tabacum (tobacco), and Solanum tuberosum (potato), as well as in the chitinase isolated from the monocotyledonous plant Hordeum vulgare (barley), this position is invariably occupied by a tyrosine. However, in the Oryza sativa (rice) basic chitinase, this position is occupied by a phenylalanine. The following additional evidence supports identification of this residue as tyrosine in Z. mays chitinase. (a) Inactivation of chitinase with EDC is reversible by treatment with hydroxylamine. (b) Liquid secondary ion mass spectrometric analysis of the isolated derivatized peptide revealed the presence of a molecular ion with a mass to charge ratio consistent with the peptide containing a derivatized tyrosine residue. These results provide evidence for an essential tyrosine residue at or near the catalytic site of chitinase that is selectively modified during inactivation with EDC.  相似文献   

11.
Amyloplast structure and intercellular transport in old and new scales ofFritillaria ussuriensis were observed by means of electron microscope. Most amyloplasts in old scales contained one starch grain, which was constructed by the layered deposition of starch around the hilum. Membrane systems and stroma of amyloplasts were pushed aside to form a shell surrounding the starch grain. In contrast, amyloplast shells in new scales contained a relatively light stroma and few internal membranes that were not organized into grana and stroma thylakoids. Active intercellular transport was observed in both new and old scales. Encytosis and exocytosis were common in the cell membrane and produced many vesicles containing numerous particles and filaments. These results lay the foundation for the further study on the mechanisms of growth and development in  相似文献   

12.
通过气相色谱-质谱法分析了水酶法提取的石榴籽油的脂肪酸组成。结果表明:石榴籽油含有丰富的不饱和脂肪酸,总不饱和脂肪酸含量达94%以上。采用Schall烘箱法,以过氧化值(POV)为参考指标,研究了光线、温度及抗氧化剂对石榴籽油氧化稳定性能的影响。结果表明,温度、光线对石榴籽油的氧化过程都有影响,温度的影响更为显著;叔丁基对苯二酚(TBHQ)对石榴籽油具有良好的抗氧化效果,并与抗坏血酸(VC)具有较好的协同增效作用;生育酚(VE)和没食子酸丙酯(PG)对石榴籽油无显著抗氧化作用。  相似文献   

13.
The wealth of epidemiological evidence in the scientific world underscores the possibility that a plant-based diet can reduce the prevalence of common diseases such as diabetes, cardiovascular disease, cancer, and stroke. The therapeutic effects of plant sources are partly explained by phenolic secondary metabolites or polyphenolic compounds. Therefore, polyphenolic compounds, which are widely distributed in plants, are of great interest for the development of effective specific drugs with antioxidant and anti-inflammatory effects. Moreover, polyphenol compounds have no harmful effects due to their natural biocompatibility and safety. Numerous studies have highlighted the potential of some industrial food wastes from plant material processing, including apple peels and mashed potatoes, grape skins, tomato and carrot peels, pomegranate peels and seeds, and many others. These byproducts are considered low-cost sources of natural biological compounds, including antioxidants, which have beneficial effects on human health.The polyphenol complex of pomegranate peel (Punica granatum L.), which makes up half of the pomegranate fruit, has more pronounced antioxidant and anti-inflammatory properties than other parts. And the most important active components of pomegranate peel, which are found only in this plant, are punicalagin, followed by ellagic acid and gallic acid. It is known that these polyphenolic compounds of pomegranate peel have the most pronounced therapeutic effect. Several studies have shown the protective effect of ellagic acid, punicalagin, against oxidative stress damage caused by free radicals. The potential of pomegranate peel as an antioxidant and therapeutic component in various biological systems is high, according to scientific sources.However, despite extensive research in recent years, a review of sources has shown that there is insufficient evidence to support the therapeutic effects of polyphenolic compounds from pomegranate peels. The role of pomegranate peel polyphenolic compounds, including flavonoids, as antioxidants in various biological systems also requires further research. Of particular importance are the mechanisms by which antioxidants influence the cellular response against oxidative stress. The purpose of this review was to report our current knowledge of plant polyphenolic compounds and their classification, and to evaluate the potential of phenolic compounds from pomegranate peels with significant antioxidant and therapeutic effects.  相似文献   

14.
A chitinase gene of Bacillus circulans WL-12 was cloned into Escherichia coli by transforming HB101 cells with a recombinant plasmid composed of chromosomal DNA fragments prepared from B. circulans WL-12 and the plasmid vector pKK223-3. DNA sequencing analysis revealed that the region necessary for the normal expression of chitinase activity contained one open reading frame of 2097 base pairs which codes for the precursor of chitinase A1. The precursor of chitinase A1 contained a long signal sequence of 41 amino acids with an extremely long N-terminal hydrophilic segment of 15 amino acids. Cloned chitinase produced in E. coli had at its N terminus an additional 8 amino acids that were not found in B. circulans mature chitinase A1. The N-terminal two-thirds of the deduced amino acid sequence of chitinase A1 showed a 33% amino acid match to chitinase A of Serratia marcescens. This region of chitinase A1 is immediately followed by tandemly repeating 95-amino acid segments that are 70% homologous to each other. Statistical analysis revealed that these repeating segments are homologous to the type III homology units of fibronectin, a multifunctional extracellular matrix and plasma protein of higher eukaryotes. This observation indicates that type III homology units originated prior to the emergence of eukaryotes and may be distributed in a wide range of organisms.  相似文献   

15.
AIMS: The present work aims to study a new chitinase from Bacillus thuringiensis subsp. kurstaki. METHODS AND RESULTS: BUPM255 is a chitinase-producing strain of B. thuringiensis, characterized by its high chitinolytic and antifungal activities. The cloning and sequencing of the corresponding gene named chi255 showed an open reading frame of 2031 bp, encoding a 676 amino acid residue protein. Both nucleotide and amino acid sequences similarity analyses revealed that the chi255 is a new chitinase gene, presenting several differences from the published chi genes of B. thuringiensis. The identification of chitin hydrolysis products resulting from the activity, exhibited by Chi255 through heterologous expression in Escherichia coli revealed that this enzyme is a chitobiosidase. CONCLUSIONS: Another chitinase named Chi255 belonging to chitobiosidase class was evidenced in B. thuringiensis subsp. kurstaki and was shown to present several differences in its amino acid sequence with those of published ones. The functionality of Chi255 was proved by the heterologous expression of chi255 in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of the sequence of chi255 to the few sequenced B. thuringiensis chi genes might contribute to a better investigation of the chitinase 'structure-function' relation.  相似文献   

16.
An approximately 60-kDa protein with chitinase activity was purified from the pancreas of the toad Bufo japonicus. Its specific activity was 4.5 times higher than that of a commercial bacterial chitinase in fragmenting crab shell chitin, and its optimal pH was approximately 6.0. A cDNA clone encoding a protein consisting of 488 amino acid residues, including part of the peptide sequence determined from the isolated protein, was obtained from a toad pancreas cDNA library. The deduced amino acid sequence indicated that the protein contained regions with high homology to those present in chitinases from different species, with the amino acid residues for the chitinase activity and the chitin-binding ability being completely conserved. We designate the protein as toad pancreatic chitinase (tPCase). Northern blot analysis revealed the mRNA of this enzyme to be expressed exclusively in the pancreas. Toad PCase is the first amphibian chitinase to be identified as well as the first pancreatic chitinase identified in a vertebrate.  相似文献   

17.
青葙子化学成分初步研究   总被引:7,自引:0,他引:7  
本文报道青葙子的主要化学成分。经测定,青葙子氨基酸种类比较齐全,必需氨基酸含量较高,占总氨基酸含量的42.85%。种子含有丰富的脂肪油,主要成分为:棕榈酸(18.225%)、硬脂酸(2.459%)、油酸(27.995%)、亚油酸(44.522%)和亚麻酸(2.374%)等,不饱和脂肪酸的含量达79.276%。种子还含有种类较齐全的矿质元素,具有较高的营养价值。  相似文献   

18.
Mycobacterium avium-intracellulare complex is a species of acid-fast microorganisms that cause opportunistic infections in immuno-compromised hosts. The cell wall of this microbe is rich in glycopeptidolipids (GPLs), which are composed of a fatty acyl moiety, several sugar moieties and a tripeptide-amino alcohol, D-Phe-D-alloThr-D-Ala-L-Alaninol. GPLs have molecular diversity in the hydrocarbon chain variety of the acyl moiety, and methyl and acetyl modifications of the sugar moiety, but there has been no report of any variety in the tripeptide-amino alcohol component. In this study, we showed two atypical GPL ions of 34 or 48 Da less than the dominant ions of GPLs by mass spectrometry. These ions could not be explained as resulting from conventional molecular diversity. To investigate the reasons why these ions appeared, we made a preparation of the lipopeptide component from intact GPLs and structurally analyzed the molecules. The results suggested that these atypical ions differed from the typical ions in amino acid composition. We further determined its composition by amino acid analysis, and the results showed that the tripeptide portion of the two atypical ions is composed of the Val-alloThr-Ala or the Leu-alloThr-Ala amino acid sequence. In this study, we present novel variations in the tripeptide portion of GPL molecules.  相似文献   

19.
Representative species of four bivalve subclasses were examined for the presence of mineral-binding phosphoprotein particles in the physiological fluids. The particles were identified in Heterodont bivalves only, and particles from nine different Heterodont species were isolated and characterized. All phosphoprotein particles are internally cross-linked via histidinoalanine residues. In all species over 80% of the amino acid residues in the particles are aspartic acid, phosphoserine (and/or phosphothreonine), and histidine. These amino acids are probably the only residues directly related to mineral ion binding, since all phosphoprotein particles bind mineral irrespective of the minor amino acid content, which is species dependent. In their native state the phosphoprotein particles contain large amounts of calcium, magnesium, and inorganic phosphate ions (up to 45 metal ions and 8 phosphate ions per 100 amino acid residues) and trace amounts of transition elements. Evidence for the presence of calcium phosphate complexes in the native phosphoprotein particles was obtained by observing a concomitant increase in the inorganic phosphate and calcium ion content of the particles with pH in vivo.  相似文献   

20.
Sun YL  Hong SK 《Biochemical genetics》2012,50(7-8):600-615
Sea buckthorn (Hippophae rhamnoides L.) is naturally distributed from Asia to Europe. It has been widely planted as an ornamental shrub and is rich in nutritional and medicinal compounds. Fungal pathogens that cause diseases such as dried-shrink disease are threats to the production of this plant. In this study, we isolated the dried-shrink disease pathogen from bark and total chitinase protein from leaves of infected plants. The results of the Oxford Cup experiment suggested that chitinase protein inhibited the growth of this pathogen. To improve pathogen resistance, we cloned chitinase Class I and III genes in H. rhamnoides, designated Hrchi1 and Hrchi3. The full-length cDNA of the open reading frame region of Hrchi1 contained 903 bp encoding 300 amino acids and Hrchi3 contained 894 bp encoding 297 amino acids. Active domain analysis, protein types, and secondary and 3D structures were predicted using online software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号