首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Onychophora (velvet worms) represent the most basal arthropod group and play a pivotal role in the current discussion on the evolution of nervous systems and segmentation in arthropods. Although there is a wealth of information on the immunolocalization of serotonin (5-hydroxytryptamine, 5-HT) in various euarthropods, as yet no comparable localization data are available for Onychophora. In order to understand how the onychophoran nervous system compares to that of other arthropods, we studied the distribution of serotonin-like immunoreactive neurons and histological characteristics of ventral nerve cords in Metaperipatus blainvillei (Onychophora, Peripatopsidae) and Epiperipatus biolleyi (Onychophora, Peripatidae).  相似文献   

2.
3.
The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage-forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks pre-morphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll's ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths.  相似文献   

4.
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.  相似文献   

5.
A fundamental question in biology is how animal segmentation arose during evolution. One particular challenge is to clarify whether segmental ganglia of the nervous system evolved once, twice, or several times within the Bilateria. As close relatives of arthropods, Onychophora play an important role in this debate since their nervous system displays a mixture of both segmental and non-segmental features. We present evidence that the onychophoran “ventral organs,” previously interpreted as segmental anlagen of the nervous system, do not contribute to nerve cord formation and therefore cannot be regarded as vestiges of segmental ganglia. The early axonal pathways in the central nervous system arise by an anterior-to-posterior cascade of axonogenesis from neuronal cell bodies, which are distributed irregularly along each presumptive ventral cord. This pattern contrasts with the strictly segmental neuromeres present in arthropod embryos and makes the assumption of a secondary loss of segmentation in the nervous system during the evolution of the Onychophora less plausible. We discuss the implications of these findings for the evolution of neural segmentation in the Panarthropoda (Arthropoda + Onychophora + Tardigrada). Our data best support the hypothesis that the ancestral panarthropod had only a partially segmented nervous system, which evolved progressively into the segmental chain of ganglia seen in extant tardigrades and arthropods.  相似文献   

6.

Background

While recent neuroanatomical and gene expression studies have clarified the alignment of cephalic segments in arthropods and onychophorans, the identity of head segments in tardigrades remains controversial. In particular, it is unclear whether the tardigrade head and its enclosed brain comprises one, or several segments, or a non-segmental structure. To clarify this, we applied a variety of histochemical and immunocytochemical markers to specimens of the tardigrade Macrobiotus cf. harmsworthi and the onychophoran Euperipatoides rowelli.

Methodology/Principal Findings

Our immunolabelling against serotonin, FMRFamide and α-tubulin reveals that the tardigrade brain is a dorsal, bilaterally symmetric structure that resembles the brain of onychophorans and arthropods rather than a circumoesophageal ring typical of cycloneuralians (nematodes and allies). A suboesophageal ganglion is clearly lacking. Our data further reveal a hitherto unknown, unpaired stomatogastric ganglion in Macrobiotus cf. harmsworthi, which innervates the ectodermal oesophagus and the endodermal midgut and is associated with the second leg-bearing segment. In contrast, the oesophagus of the onychophoran E. rowelli possesses no immunoreactive neurons, whereas scattered bipolar, serotonin-like immunoreactive cell bodies are found in the midgut wall. Furthermore, our results show that the onychophoran pharynx is innervated by a medullary loop nerve accompanied by monopolar, serotonin-like immunoreactive cell bodies.

Conclusions/Significance

A comparison of the nervous system innervating the foregut and midgut structures in tardigrades and onychophorans to that of arthropods indicates that the stomatogastric ganglion is a potential synapomorphy of Tardigrada and Arthropoda. Its association with the second leg-bearing segment in tardigrades suggests that the second trunk ganglion is a homologue of the arthropod tritocerebrum, whereas the first ganglion corresponds to the deutocerebrum. We therefore conclude that the tardigrade brain consists of a single segmental region corresponding to the arthropod protocerebrum and, accordingly, that the tardigrade head is a non-composite, one-segmented structure.  相似文献   

7.
8.

Background

The so-called ventral organs are amongst the most enigmatic structures in Onychophora (velvet worms). They were described as segmental, ectodermal thickenings in the onychophoran embryo, but the same term has also been applied to mid-ventral, cuticular structures in adults, although the relationship between the embryonic and adult ventral organs is controversial. In the embryo, these structures have been regarded as anlagen of segmental ganglia, but recent studies suggest that they are not associated with neural development. Hence, their function remains obscure. Moreover, their relationship to the anteriorly located preventral organs, described from several onychophoran species, is also unclear. To clarify these issues, we studied the anatomy and development of the ventral and preventral organs in several species of Onychophora.

Results

Our anatomical data, based on histology, and light, confocal and scanning electron microscopy in five species of Peripatidae and three species of Peripatopsidae, revealed that the ventral and preventral organs are present in all species studied. These structures are covered externally with cuticle that forms an internal, longitudinal, apodeme-like ridge. Moreover, phalloidin-rhodamine labelling for f-actin revealed that the anterior and posterior limb depressor muscles in each trunk and the slime papilla segment attach to the preventral and ventral organs, respectively. During embryonic development, the ventral and preventral organs arise as large segmental, paired ectodermal thickenings that decrease in size and are subdivided into the smaller, anterior anlagen of the preventral organs and the larger, posterior anlagen of the ventral organs, both of which persist as paired, medially-fused structures in adults. Our expression data of the genes Delta and Notch from embryos of Euperipatoides rowelli revealed that these genes are expressed in two, paired domains in each body segment, corresponding in number, position and size with the anlagen of the ventral and preventral organs.

Conclusions

Our findings suggest that the ventral and preventral organs are a common feature of onychophorans that serve as attachment sites for segmental limb depressor muscles. The origin of these structures can be traced back in the embryo as latero-ventral segmental, ectodermal thickenings, previously suggested to be associated with the development of the nervous system.
  相似文献   

9.
A tiny arthropod, with five growth stages, is described. Three of the instars are metanauplius-like larvae, having unsegmented bodies and four pairs of appendages. The largest stage, with a length of about 1.5 mm, may still be immature. Its body is divided into three tagmata. The cephalon, including five appendiculate segments, h a projecting forehead with a rostral spine and a small shield with a joint between fourth and fifth segments. Eyes are absent. The trunk is composed of seven annular segments, the anterior two with appendages. The caudal end is a long pleotelson-like segment with the anus on its ventral surface. There are seven pairs of appendages: uniramous antennulae, composed of few tubular podomeres; four pairs of biramous postantennular, almost homeomorphic cephalic appendages; two pairs on the trunk, the anterior pair being similar to the cephalic appendages except for the exopodite, the posterior being much smaller, uniramous and apparently rudimentary. Martinssonia was probably benthic, feeding on detritic particles which it stirred up from the bottom. Besides various crustacean-like features, the new form reveals structures different from Crustacea as well as from all other known arthropodan groups. Martinssonia presumably is a descendant of an euarthropodan group, originating from the crustacean branch long before reaching the eucrustacean level of evolution.  相似文献   

10.

Background  

Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because the resulting change in sex ratio is expected to affect the evolution of sex-specific dispersal, we investigated under which environmental conditions strong sex-biased dispersal would emerge, and how this would affect host and endosymbiont metapopulation persistence.  相似文献   

11.

Background  

During embryonic development of segmented animals, body segments are thought to arise from the so-called "posterior growth zone" and the occurrence of this "zone" has been used to support the homology of segmentation between arthropods, annelids, and vertebrates. However, the term "posterior growth zone" is used ambiguously in the literature, mostly referring to a region of increased proliferation at the posterior end of the embryo. To determine whether such a localised posterior proliferation zone is an ancestral feature of Panarthropoda (Onychophora + Tardigrada + Arthropoda), we examined cell division patterns in embryos of Onychophora.  相似文献   

12.
13.

Background  

The epidermal appendages of reptiles and birds are constructed of beta (β) keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians.  相似文献   

14.
Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda + Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian.  相似文献   

15.

Background  

The role of gene duplication in the structural and functional evolution of genomes has been well documented. Analysis of complete rice (Oryza sativa) genome sequences suggested an ancient whole genome duplication, common to all the grasses, some 50-70 million years ago and a more conserved segmental duplication between the distal regions of the short arms of chromosomes 11 and 12, whose evolutionary history is controversial.  相似文献   

16.
Arthropods typically show two types of segmentation: the embryonic parasegments and the adult segments that lie out of register with each other. Such a dual nature of body segmentation has not been described from Onychophora, one of the closest arthropod relatives. Hence, it is unclear whether onychophorans have segments, parasegments, or both, and which of these features was present in the last common ancestor of Onychophora and Arthropoda. To address this issue, we analysed the expression patterns of the “segment polarity genes” engrailed, cubitus interruptus, wingless and hedgehog in embryos of the onychophoran Euperipatoides rowelli. Our data revealed that these genes are expressed in repeated sets with a specific anterior-to-posterior order along the body in embryos of E. rowelli. In contrast to arthropods, the expression occurs after the segmental boundaries have formed. Moreover, the initial segmental furrow retains its position within the engrailed domain throughout development, whereas no new furrow is formed posterior to this domain. This suggests that no re-segmentation of the embryo occurs in E. rowelli. Irrespective of whether or not there is a morphological or genetic manifestation of parasegments in Onychophora, our data clearly show that parasegments, even if present, cannot be regarded as the initial metameric units of the onychophoran embryo, because the expression of key genes that define the parasegmental boundaries in arthropods occurs after the segmental boundaries have formed. This is in contrast to arthropods, in which parasegments rather than segments are the initial metameric units of the embryo. Our data further revealed that the expression patterns of “segment polarity genes” correspond to organogenesis rather than segment formation. This is in line with the concept of segmentation as a result of concerted evolution of individual periodic structures rather than with the interpretation of ‘segments’ as holistic units.  相似文献   

17.

Background

The mismatch between dorsal and ventral trunk features along the millipede trunk was long a subject of controversy, largely resting on alternative interpretations of segmentation. Most models of arthropod segmentation presuppose a strict sequential antero-posterior specification of trunk segments, whereas alternative models involve the early delineation of a limited number of ‘primary segments’ followed by their sequential stereotypic subdivision into 2n definitive segments. The ‘primary segments’ should be intended as units identified by molecular markers, rather than as overt morphological entities. Two predictions were suggested to test the plausibility of multiple-duplication models of segmentation: first, a specific pattern of evolvability of segment number in those arthropod clades in which segment number is not fixed (e.g., epimorphic centipedes and millipedes); second, the occurrence of discrete multisegmental patterns due to early, initially contiguous positional markers.

Results

We describe a unique case of a homeotic millipede with 6 extra pairs of ectopic gonopods replacing walking legs on rings 8 (leg-pairs 10-11), 15 (leg-pairs 24-25) and 16 (leg-pairs 26-27); we discuss the segmental distribution of these appendages in the framework of alternative models of segmentation and present an interpretation of the origin of the distribution of the additional gonopods. The anterior set of contiguous gonopods (those normally occurring on ring 7 plus the first set of ectopic ones on ring 8) is reiterated by the posterior set (on rings 15-16) after exactly 16 leg positions along the AP body axis. This suggests that a body section including 16 leg pairs could be a module deriving from 4 cycles of regular binary splitting of an embryonic ‘primary segment’.

Conclusions

A very likely early determination of the sites of the future metamorphosis of walking legs into gonopods and a segmentation process according to the multiplicative model may provide a detailed explanation for the distribution of the extra gonopods in the homeotic specimen. The hypothesized steps of segmentation are similar in both a normal and the studied homeotic specimen. The difference between them would consist in the size of the embryonic trunk region endowed with a positional marker whose presence will later determine the replacement of walking legs by gonopods.  相似文献   

18.

Background  

In plants, tandem, segmental and whole-genome duplications are prevalent, resulting in large numbers of duplicate loci. Recent studies suggest that duplicate genes diverge predominantly through the partitioning of expression and that breadth of gene expression is related to the rate of gene duplication and protein sequence evolution.  相似文献   

19.

Background  

Chemoreception is vitally important for all animals, yet little is known about the genetics of chemoreception in aquatic organisms. The keystone species Daphnia pulex, a well known crustacean, is the first aquatic invertebrate to have its genome sequenced. This has allowed us the initial investigation of chemoreceptor genes in an aquatic invertebrate, and to begin the study of chemoreceptor evolution across the arthropod phylum.  相似文献   

20.

Background  

Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号