首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ctr1 (copper transporter 1) mediates high-affinity copper uptake. Ctr2 (copper transporter 2) shares sequence similarity with Ctr1, yet its function in mammalian cells is poorly understood. In African green monkey kidney COS-7 cells and rat tissues, Ctr2 migrated as a predominant band of approximately 70 kDa and was most abundantly expressed in placenta and heart. A transiently expressed hCtr2-GFP (human Ctr2-green fluorescent protein) fusion protein and the endogenous Ctr2 in COS-7 cells were mainly localized to the outer membrane of cytoplasmic vesicles, but were also detected at the plasma membrane. Biotinylation of Ctr2 with the membrane-impermeant reagent sulfo-NHS-SS-biotin [sulfosuccinimidyl-2-(biotinamido)ethyl-1,3-dithiopropionate] confirmed localization at the cell surface. Cells expressing hCtr2-GFP hyperaccumulated copper when incubated in medium supplemented with 10 microM CuSO(4), whereas cells depleted of endogenous Ctr2 by siRNAs (small interfering RNAs) accumulated lower levels of copper. hCtr2-GFP expression did not affect copper efflux, suggesting that hCtr2-GFP increased cellular copper concentrations by promoting uptake at the cell surface. Kinetic analyses showed that hCtr2-GFP stimulated saturable copper uptake with a K(m) of 11.0+/-2.5 microM and a K(0.5) of 6.9+/-0.7 microM when data were fitted to a rectangular hyperbola or Hill equation respectively. Competition experiments revealed that silver completely inhibited hCtr2-GFP-dependent copper uptake, whereas zinc, iron and manganese had no effect on uptake. Furthermore, increased copper concentrations in hCtr2-GFP-expressing cells were inversely correlated with copper chaperone for Cu/Zn superoxide dismutase protein expression. Collectively, these results suggest that Ctr2 promotes copper uptake at the plasma membrane and plays a role in regulating copper levels in COS-7 cells.  相似文献   

2.
The vinegar fly Drosophila melanogaster is proving to be an excellent system to study the in vivo regulation of the essential metal copper. The Ctr1A/B and DmATP7 copper transport proteins have well-established roles in Drosophila copper uptake and efflux, respectively. Both Ctr1A and DmATP7 are essential genes, whereas Ctr1B mutants are viable but die in excess or depleted copper conditions. Less is known about the tissue-specific requirements for these three genes and how they interact to maintain copper homeostasis in different cell types. Here, we use targeted overexpression and suppression of each gene to examine these questions in vivo. We find that in the epidermal cells that form the adult thoracic and abdominal cuticle, Ctr1A plays a major role in copper uptake, whereas Ctr1B plays only a minor supporting role and DmATP7, as previously shown, is essential for transfer of copper to the trans-Golgi network. We also find that the copper chaperone dSco1 appears necessary for supplying the mitochondria with copper in these tissues. In contrast, in the developing Drosophila eye, DmATP7 appears to be non-essential unless copper levels in these cells are artificially elevated. Again, Ctr1A is the main copper uptake gene in the eye, but when ectopically expressed, Ctr1B has greater phenotypic effects than Ctr1A. Furthermore, Ctr1A and Ctr1B show a dramatic synergistic interaction, indicating their relationship is more complicated than a simply additive one and that they may in fact act cooperatively for optimal copper import.  相似文献   

3.
Living organisms have evolved intricate systems to harvest trace elements from the environment, to control their intracellular levels, and to ensure adequate delivery to the various organs and cellular compartments. Copper is one of these trace elements. It is at the same time essential for life but also highly toxic, not least because it facilitates the generation of reactive oxygen species. In mammals, copper uptake in the intestine and copper delivery into other organs are mediated by the copper importer Ctr1. Drosophila has three Ctr1 homologs: Ctr1A, Ctr1B, and Ctr1C. Earlier work has shown that Ctr1A is an essential gene that is ubiquitously expressed throughout development, whereas Ctr1B is responsible for efficient copper uptake in the intestine. Here, we characterize the function of Ctr1C and show that it functions as a copper importer in the male germline, specifically in maturing spermatocytes and mature sperm. We further demonstrate that loss of Ctr1C in a Ctr1B mutant background results in progressive loss of male fertility that can be rescued by copper supplementation to the food. These findings hint at a link between copper and male fertility, which might also explain the high Ctr1 expression in mature mammalian spermatozoa. In both mammals and Drosophila, the X chromosome is known to be inactivated in the male germline. In accordance with such a scenario, we provide evidence that in Drosophila, the autosomal Ctr1C gene originated as a retrogene copy of the X-linked Ctr1A, thus maintaining copper delivery during male spermatogenesis.  相似文献   

4.
《Biophysical journal》2022,121(7):1194-1204
Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.  相似文献   

5.
Members of the Cu transporter (Ctr) family have been reported to be part of the copper uptake machinery in several organisms. Recently it has been suggested that human Ctr1 (hCtr1) may act as a copper transporter in several tissues including the intestine. hCtr1 is a 190 amino acid protein and is predicted to have three transmembrane-spanning domains and exist in the plasma membrane as a homo-trimer. Ctr1-transfected cell lines exhibit saturable, pH-dependent Cu(I) uptake indicating a role in copper transport. Recent studies with Ctr1 knockout mice have highlighted an essential function in mammalian embryonic development since homozygous mutants die in utero. Heterozygotes are indistinguishable from wild-type littermates but have a severely reduced brain copper content, suggesting that Ctr1 is a key component of the copper uptake pathway in the brain. However, its role in other tissues remains elusive.  相似文献   

6.
Silver is a non-essential, toxic metal. The use of silver as an antimicrobial agent in many applications and its presence as a contaminant in foods and air can lead to accumulation in tissues. Despite its widespread use, the systems involved in the uptake of silver into mammalian cells are presently unknown. Previous studies have shown that copper uptake at the plasma membrane by copper transporter 1 (Ctr1) is inhibited by an excess of silver, suggesting that Ctr1 may function in importing silver into cells. In this study we examined directly the role of Ctr1 in the accumulation of silver in mammalian cells using over-expression experiments and mouse embryonic fibroblast cells lacking Ctr1. COS-7 cells transfected to express a human Ctr1-green fluorescent protein (hCtr1-GFP) fusion protein hyper-accumulated silver when incubated in medium supplemented with low micromolar concentrations (2.5–10 μmol/L) of AgNO3. An hCtr1-GFPM150L,M154L variant deficient for copper transport failed to stimulate accumulation of silver. Mouse embryonic fibroblast cells lacking Ctr1 showed approximately a 50% reduction in silver content when incubated in silver-supplemented medium compared to a wild-type isogenic cell line. Collectively, these data demonstrate that Ctr1 transports both copper and silver and suggest that Ctr1 is an important transport protein in the accumulation of silver in mammalian cells.  相似文献   

7.
Glutaredoxins are a family of small molecular weight proteins that have a central role in cellular redox regulation. Human GRX1 (hGRX1) has also been shown to play an integral role in copper homeostasis by regulating the redox activity of the metalated sites of copper chaperones such as ATOX1 and SOD1, and the copper efflux proteins ATP7A and ATP7B. To further elucidate the role of hGRX1 in copper homeostasis, we examined the impact of RNA interference-mediated knockdown of CG6852, a putative Drosophila orthologue of hGRX1. CG6852 shares ~41 % amino acid identity with hGRX1 and key functional domains including the metal-binding CXXC motif are conserved between the two proteins. Knockdown of CG6852 in the adult midline caused a thoracic cleft and reduced scutellum, phenotypes that were exacerbated by additional knockdown of copper uptake transporters Ctr1A and Ctr1B. Knockdown of CG6852 in the adult eye enhanced a copper-deficiency phenotype caused by Ctr1A knockdown while ubiquitous knockdown of CG6852 resulted a mild systemic copper deficiency. Therefore we conclude that CG6852 is a putative orthologue of hGRX1 and may play an important role in Drosophila copper homeostasis.  相似文献   

8.
Copper is an integral part of a number of proteins and thus an essential trace metal. However, free copper ions can be highly toxic and every organism has to carefully control its bioavailability. Eukaryotes contain three copper chaperones; Atx1p/Atox1 which delivers copper to ATP7 transporters located in the trans-Golgi network, Cox17 which provides copper to the mitochondrial cytochrome c oxidase, and CCS which is a copper chaperone for superoxide dismutase 1. Here we describe the knockout phenotype of the Drosophila homolog of mammalian Atox1 (ATX1 in yeast). Atox1/− flies develop normally, though at reduced numbers, and the eclosing flies are fertile. However, the mutants are unable to develop on low-copper food. Furthermore, the intestinal copper importer Ctr1B, which is regulated by copper demand, fails to be induced upon copper starvation in Atox1/− larvae. At the same time, intestinal metallothionein is upregulated. This phenotype, which resembles the one of the ATP7 mutant, is best explained by intestinal copper accumulation, combined with insufficient delivery to the rest of the body. In addition, compared to controls, Drosophila Atox1 mutants are relatively insensitive to the anticancer drug cisplatin, a compound which is also imported via Ctr1 copper transporters and was recently found to bind mammalian Atox1.  相似文献   

9.
10.
Biochemical characterization of the human copper transporter Ctr1.   总被引:17,自引:0,他引:17  
The trace metal copper is an essential cofactor for a number of biological processes including mitochondrial oxidative phosphorylation, free radical detoxification, neurotransmitter synthesis and maturation, and iron metabolism. Consequently, copper transport at the cell surface and the delivery of copper to intracellular proteins are critical events in normal physiology. Little is known about the molecules and biochemical mechanisms responsible for copper uptake at the plasma membrane in mammals. Here, we demonstrate that human Ctr1 (hCtr1) is a component of the copper transport machinery at the plasma membrane. hCtr1 transports copper with high affinity in a time-dependent and saturable manner and is metal-specific. hCtr1-mediated (64)Cu transport is an energy-independent process and is stimulated by extracellular acidic pH and high K(+) concentrations. hCtr1 exists as a homomultimer at the plasma membrane in mammalian cells. This is the first report on the biochemical characterization of the human copper transporter hCtr1, which is important for understanding mechanisms for mammalian copper transport at the plasma membrane.  相似文献   

11.
12.
13.
14.
15.
Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma membrane and mediates copper accumulation when expressed in the Saccharomyces cerevisiae copper uptake mutant. Although the primary sequence of COPT6 contains the family conserved domains, including methionine-rich motifs in the extracellular N-terminal domain and a second transmembrane helix (TM2), it is different from the founding family member, S. cerevisiae Ctr1p. This conclusion was based on the finding that although the positionally conserved Met106 residue in the TM2 of COPT6 is functionally essential, the conserved Met27 in the N-terminal domain is not. Structure-function studies revealed that the N-terminal domain is dispensable for COPT6 function in copper-replete conditions but is important under copper-limiting conditions. In addition, COPT6 interacts with itself and with its homolog, COPT1, unlike Ctr1p, which interacts only with itself. Analyses of the expression pattern showed that although COPT6 is expressed in different cell types of different plant organs, the bulk of its expression is located in the vasculature. We also show that COPT6 expression is regulated by copper availability that, in part, is controlled by a master regulator of copper homeostasis, SPL7. Finally, studies using the A. thaliana copt6-1 mutant and plants overexpressing COPT6 revealed its essential role during copper limitation and excess.  相似文献   

16.
Copper metallochaperones represent a new family of soluble, low-molecular-weight proteins that function to deliver copper to specific sites within a cell. How the metallochaperones acquire their copper, however, is not known. In this study, we have conducted a survey of known metal ion transporters in bakers' yeast, Saccharomyces cerevisiae, to identify those that contribute copper to pathways involving the metallochaperones Atxlp and Lys7p. The results indicatethat, in addition to the well known Ctr1p and Ctr3p high-affinity copper transporters, the metallochaperones can acquire their copper through pathways involving the relatively non-specific divalent metal ion transporter Fet4p and the putative low-affinitycopper transporter Ctr2p. We have examined the localization of Ctr2p using an epitope tagged version of the protein and find that Ctr2p does not localize to the cell surface but may operate at the level of the vacuole to mobilize intracellular copper. Inaddition to Ctrlp, Ctr2p, Ctr3p and Fet4p, other metal transport systems can act as upstream donors of copper for the metallochaperones when copper availability in the medium is increased. Although the nature of these auxiliary systems is unknown, they do not appear to involve the yeast members of the Nramp family of divalent transporters, or uptake mechanisms that involve endocytosis. Since vastly different metal transporters located at either the cell surface or intracellular sites can all contribute copper to metallochaperones, it is unlikely that the metallochaperones directly interact with the metal transporters to obtain the metal.  相似文献   

17.
The redox active metal copper is an essential cofactor in critical biological processes such as respiration, iron transport, oxidative stress protection, hormone production, and pigmentation. A widely conserved family of high affinity copper transport proteins (Ctr proteins) mediates copper uptake at the plasma membrane. However, little is known about Ctr protein topology, structure, and the mechanisms by which this class of transporters mediates high affinity copper uptake. In this report, we elucidate the topological orientation of the yeast Ctr1 copper transport protein. We show that a series of clustered methionine residues in the hydrophilic extracellular domain and an MXXXM motif in the second transmembrane domain are important for copper uptake but not for protein sorting and delivery to the cell surface. The conversion of these methionine residues to cysteine, by site-directed mutagenesis, strongly suggests that they coordinate to copper during the process of metal transport. Genetic evidence supports an essential role for cooperativity between monomers for the formation of an active Ctr transport complex. Together, these results support a fundamentally conserved mechanism for high affinity copper uptake through the Ctr proteins in yeast and humans.  相似文献   

18.
19.
20.
Cellular uptake of platinum-based antitumor drugs is a critical step in the mechanism of the drug action and associated resistance, and deeper understanding of this step may inspire development of novel methods for new drugs with reduced resistance. Human copper transporter 1 (hCtr1), a copper influx protein, was recently found to facilitate the cellular entry of several platinum drugs. In the work reported here, we constructed a Met- and His-rich 20mer peptide (hCtr1-N20) corresponding to the N-terminal domain of hCtr1, which is the essential domain of hCtr1 for transporting platinum drugs. The interactions of the peptide with cisplatin and its analogues, including transplatin, carboplatin, oxaliplatin, and [Pt(l-Met)Cl2], were explored at the molecular level. Electrospray ionization (ESI) mass spectrometry (MS) data revealed that all of the platinum(II) complexes used in present study can bind to hCtr1-N20 in 1:1 and 2:1 stoichiometry. Four Met residues should be involved in binding to cis-platinum complexes on the basis of the tandem MS spectrometry and previously reported data. Time-dependent 2D [1H,15N] heteronuclear single quantum coherence NMR spectra indicate the reaction of cisplatin with hCtr1-N20 is a stepwise process. The intermediate, however, is transient, which is consistent with the ESI-MS results. Time-dependent ESI-MS data revealed that the geometry and the properties of both the leaving and the nonleaving groups of platinum(II) complexes play essential roles in controlling the reactivity and formation of the final products with hCtr1-N20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号