首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinal pigment epithelial (RPE) cells play an important role in normal functioning of retina and photoreceptors, and some retinal degenerations arise due to malfunctioning RPE. Retinal pigment epithelium transplantation is being explored as a strategy to rescue degenerating photoreceptors in diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Additionally, RPE-secreted factors could rescue degenerating photoreceptors by prolonging survival or by their ability to differentiate and give rise to photoreceptors by transdifferentiation. In this study, we have explored what role cell density could play in differentiation induced in a human retinal progenitor cell line, in response to RPE-secreted growth factors. Retinal progenitors plated at low (1 × 104 cells/cm2), medium (2–4 × 104 cells/cm2), and high (1 × 105 cells/cm2) cell density were exposed to various dilutions of RPE-conditioned medium (secreted factors) under conditions of defined medium culture. Progenitor cell differentiation was monitored phenotypically (morphological, biochemical analysis, and immunophenotyping, and western blot analysis were performed). Our data show that differentiation in response to RPE-secreted factors is modulated by cell density and dilutions of conditioned medium. We conclude that before embarking on RPE transplantation as a modality for treatment of RP and AMD, one will have to determine the role that cell density and inhibitory and stimulatory neurotrophins secreted by RPE could play in the efficacy of survival of transplants. We report that RPE-conditioned medium enhances neuronal phenotype (photoreceptors, bipolars) at the lowest cell density in the absence of cell–cell contact. Eighty percent to 90% of progenitor cells differentiate into photoreceptors and bipolars at 50% concentration of conditioned medium, while exposure to 100% conditioned medium might increase multipolar neurons (ganglionic and amacrine phenotypes) to a small degree. However, no clear-cut pattern of differentiation in response to RPE-secreted factors is noted at higher cell densities.  相似文献   

2.
Alternative splicing is the primary mechanism by which a limited number of protein-coding genes can generate proteome diversity. We have investigated the role of the alternative-splicing factor Sfrs1, an arginine/serine-rich (SR) protein family member, during mouse retinal development. Loss of Sfrs1 function during embryonic retinal development had a profound effect, leading to a small retina at birth. In addition, the retina underwent further degeneration in the postnatal period. Loss of Sfrs1 function resulted in the death of retinal neurons that were born during early to mid-embryonic development. Ganglion cells, cone photoreceptors, horizontal cells and amacrine cells were produced and initiated differentiation. However, these neurons subsequently underwent cell death through apoptosis. By contrast, Sfrs1 was not required for the survival of the neurons generated later, including later-born amacrine cells, rod photoreceptors, bipolar cells and Müller glia. Our results highlight the requirement of Sfrs1-mediated alternative splicing for the survival of retinal neurons, with sensitivity defined by the window of time in which the neuron was generated.  相似文献   

3.
The development of photoreceptors in the mammalian retina is thought to be controlled by extrinsic signals. We have shown previously that ciliary neurotrophic factor (CNTF) potently inhibits photoreceptor differentiation in cultures of rat retina. The present study analyzes which developmental processes are affected by CNTF. Rod differentiation as determined by opsin and recoverin immunocytochemistry was effectively blocked by CNTF and leukemia inhibitory factor, but not by other neurotrophic agents tested. CNTF did not influence proliferation, cell death, or survival, and had no effect on the downregulation of nestin immunoreactivity in progenitor cells. Opsin-positive rods could be reverted to an opsin-negative state initially, but became unresponsive to CNTF later. No compensatory increase in the number of other cell types was observed. Application of neutralizing antibodies against CNTF revealed that rod development was partially blocked by an endogenous CNTF-like molecule in control cultures. Our results suggest that CNTF can act as a specific negative regulator of rod differentiation. Its action on photoreceptor precursor cells could serve to synchronize the maturation of photoreceptors, which are born over an extended period of time. Together with other stimulatory signals, CNTF may thus control the temporally and numerically correct integration of photoreceptors into the retinal network.  相似文献   

4.
We previously reported the differentiation of mouse embryonic stem (ES) cells into retinal progenitors. However, these progenitors rarely differentiate into photoreceptors unless they are cultured with embryonic retinal tissues. Here we show the in vitro generation of putative rod and cone photoreceptors from mouse, monkey and human ES cells by stepwise treatments under defined culture conditions, in the absence of retinal tissues. With mouse ES cells, Crx+ photoreceptor precursors were induced from Rx+ retinal progenitors by treatment with a Notch signal inhibitor. Further application of fibroblast growth factors, Shh, taurine and retinoic acid yielded a greater number of rhodopsin+ rod photoreceptors, in addition to default cone production. With monkey and human ES cells, feeder- and serum-free suspension culture combined with Wnt and Nodal inhibitors induced differentiation of Rx+ or Mitf+ retinal progenitors, which produced retinal pigment epithelial cells. Subsequent treatment with retinoic acid and taurine induced photoreceptor differentiation. These findings may facilitate the development of human ES cell-based transplantation therapies for retinal diseases.  相似文献   

5.
Li S  Mo Z  Yang X  Price SM  Shen MM  Xiang M 《Neuron》2004,43(6):795-807
  相似文献   

6.
Dlx homeobox genes, the vertebrate homologs of Distal-less, play important roles in the development of the vertebrate forebrain, craniofacial structures and limbs. Members of the Dlx gene family are also expressed in retinal ganglion cells (RGC), amacrine and horizontal cells of the developing and postnatal retina. Expression begins at embryonic day 12.5 and is maintained until late embryogenesis for Dlx1, while Dlx2 expression extends to adulthood. We have assessed the retinal phenotype of the Dlx1/Dlx2 double knockout mouse, which dies at birth. The Dlx1/2 null retina displays a reduced ganglion cell layer (GCL), with loss of differentiated RGCs due to increased apoptosis, and corresponding thinning of the optic nerve. Ectopic expression of Crx, the cone and rod photoreceptor homeobox gene, in the GCL and neuroblastic layers of the mutants may signify altered cell fate of uncommitted RGC progenitors. However, amacrine and horizontal cell differentiation is relatively unaffected in the Dlx1/2 null retina. Herein, we propose a model whereby early-born RGCs are Dlx1 and Dlx2 independent, but Dlx function is necessary for terminal differentiation of late-born RGC progenitors.  相似文献   

7.
Previous studies suggest that ciliary neurotrophic factor (CNTF) may represent one of the extrinsic signals controlling the development of vertebrate retinal photoreceptors. In dissociated cultures from embryonic chick retina, exogenously applied CNTF has been shown to act on postmitotic rod precursor cells, resulting in an two- to fourfold increase in the number of cells acquiring an opsin-positive phenotype. We now demonstrate that the responsiveness of photoreceptor precursors to CNTF is confined to a brief phase between their final mitosis and their terminal differentiation owing to the temporally restricted expression of the CNTF receptor (CNTFRα). As shown immunocytochemically, CNTFRα expression in the presumptive photoreceptor layer of the chick retina starts at embryonic day 8 (E8) and is rapidly down-regulated a few days later prior to the differentiation of opsin-positive photoreceptors, both in vivo and in dissociated cultures from E8. We further show that the CNTF-dependent in vitro differentiation of rods is followed by a phase of photoreceptor-specific apoptotic cell death. The loss of differentiated rods during this apoptotic phase can be prevented by micromolar concentrations of retinol. Our results provide evidence that photoreceptor development depends on the sequential action of different extrinsic signals. The time course of CNTFRα expression and the in vitro effects suggest that CNTF or a related molecule is required during early stages of rod differentiation, while differentiated rods depend on additional protective factors for survival. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 672–683, 1998  相似文献   

8.
neuroD is a member of the family of proneural genes, which function to regulate the cell cycle, cell fate determination and cellular differentiation. In the retinas of larval and adult teleosts, neuroD is expressed in two populations of post-mitotic cells, a subset of amacrine cells and nascent cone photoreceptors, and proliferating cells in the lineages that give rise exclusively to rod and cone photoreceptors. Based on previous studies of NeuroD function in vitro and the cellular pattern of neuroD expression in the zebrafish retina, we hypothesized that within the mitotic photoreceptor lineages NeuroD selectively regulates aspects of the cell cycle. To test this hypothesis, gain and loss-of-function approaches were employed, relying on the inducible expression of a NeuroDEGFP fusion protein and morpholino oligonucleotides to inhibit protein translation, respectively. Conditional expression of neuroD causes cells to withdraw from the cell cycle, upregulate the expression of the cell cycle inhibitors, p27 and p57, and downregulate the cell cycle progression factors, Cyclin B1, Cyclin D1, and Cyclin E2. In the absence of NeuroD, cells specific for the rod and cone photoreceptor lineage fail to exit the cell cycle, and the number of cells expressing Cyclin D1 is increased. When expression is ectopically induced in multipotent progenitors, neuroD promotes the genesis of rod photoreceptors and inhibits the genesis of Müller glia. These data show that in the teleost retina NeuroD plays a fundamental role in photoreceptor genesis by regulating mechanisms that promote rod and cone progenitors to withdraw from the cell cycle. This is the first in vivo demonstration in the retina of cell cycle regulation by NeuroD.  相似文献   

9.
Xia X  Li Y  Huang D  Wang Z  Luo L  Song Y  Zhao L  Wen R 《PloS one》2011,6(3):e18282
Retinitis pigmentosa (RP) is a group of photoreceptor degenerative disorders that lead to loss of vision. Typically, rod photoreceptors degenerate first, resulting in loss of night and peripheral vision. Secondary cone degeneration eventually affects central vision, leading to total blindness. Previous studies have shown that photoreceptors could be protected from degeneration by exogenous neurotrophic factors, including ciliary neurotrophic factor (CNTF), a member of the IL-6 family of cytokines. Using a transgenic rat model of retinal degeneration (the S334-ter rat), we investigated the effects of Oncostatin M (OSM), another member of the IL-6 family of cytokines, on photoreceptor protection. We found that exogenous OSM protects both rod and cone photoreceptors. In addition, OSM promotes regeneration of cone outer segments in early stages of cone degeneration. Further investigation showed that OSM treatment induces STAT3 phosphorylation in Müller cells but not in photoreceptors, suggesting that OSM not directly acts on photoreceptors and that the protective effects of OSM on photoreceptors are mediated by Müller cells. These findings support the therapeutic strategy using members of IL-6 family of cytokines for retinal degenerative disorders. They also provide evidence that activation of the STAT3 pathway in Müller cells promotes photoreceptor survival. Our work highlights the importance of Müller cell-photoreceptor interaction in the retina, which may serve as a model of glia-neuron interaction in general.  相似文献   

10.
11.
Multipotential retinal precursors give rise to all cell types seen in multilayered retina. The generation of differentiation and diversity of neuronal cell types is determined by both extrinsic regulatory signals and endogenous genetic programs. We have previously reported that cell commitment in human retinal precursor cells (SV-40T) can be modified in response to exogenous growth factors, basic fibroblast growth factor, and transforming growth factor alpha (bFGF and TGFalpha). We report in this study that nontransformed human retinal precursors differentiate into photoreceptors by a cell density-dependent mechanism, and the effects were potentiated by bFGF and TGFalpha alone or in combination. A larger proportion of multipotential precursors plated at a density of 1 x 10(4) cells/cm(2) differentiated into neurons (photoreceptors) compared to cells plated at 3-5 x 10(4)/cm(2) and 1 x 10(5) cells/cm(2) under serum-free conditions and the effects were amplified seven- to eightfold in response to growth factors. Basic fibroblast growth factor (bFGF) and TGFalpha can induce 90% of the cells to assume a photoreceptor phenotype at a lower cell density, compared to only 30 and 25% of the cells acquiring a photoreceptor phenotype at intermediate and higher cell densities. Furthermore, at a lower cell density, 60-70% of the cells incorporate Bromodeoxyuridine (Brdu), suggesting that cells in a cell cycle may make a commitment to a specific fate in response to neurotrophins. Neurons with a photoreceptor phenotype were positive for three different sets of antibodies for rods/cones. Cells also exhibited upregulation of other proteins such as a D4 receptor protein expressed in photoreceptors, protein kinase Calpha (PKCalpha) expressed in rod bipolars and blue cones, and some other neuronal cell types. This was also confirmed by Western blot analysis. Newly derived photoreceptors survive for a few days before significant cell death ensues under serum-free conditions. To summarize, differentiation in precursors is density dependent, and growth factors amplify the effects.  相似文献   

12.
13.
Cone bipolar cells of the vertebrate retina connect photoreceptors with ganglion cells to mediate photopic vision. Despite this important role, the mechanisms that regulate cone bipolar cell differentiation are poorly understood. VSX1 is a CVC domain homeoprotein specifically expressed in cone bipolar cells. To determine the function of VSX1, we generated Vsx1 mutant mice and found that Vsx1 mutant retinal cells form but do not differentiate a mature cone bipolar cell phenotype. Electrophysiological studies demonstrated that Vsx1 mutant mice have defects in their cone visual pathway, whereas the rod visual pathway was unaffected. Thus, Vsx1 is required for cone bipolar cell differentiation and regulates photopic vision perception.  相似文献   

14.
We have shown that embryonic retina contains progenitors which display stem cell properties in vitro. These cells are proliferative and in addition to expressing the neuroectodermal marker, nestin, are multipotential. These properties and the fact that the putative stem cells can differentiate as photoreceptors when exposed to conducive environment identify them as a viable transplantation reagents to address degenerative retinal diseases. Here we report the survival and differentiation of cultured retinal progenitors upon subretinal transplantation. The retinal progenitor grafts, either as neural spheres or in the form of dissociated cells, survived without disrupting the morphology and laminar organization of the host retina. They did not form rosettes, the morphological barrier to the reconstruction of the normal anatomy of the retina. In addition, transplanted progenitors expressed photoreceptor-specific markers, suggesting that progenitors have the potential to differentiate as photoreceptors. Our observations suggest that cultured retinal progenitors can be a viable reagents for therapeutic transplantation.  相似文献   

15.
Retinal degenerations are the leading cause of genetically inherited blindness. One of the strategies currently being tested for the treatment is cell/tissue transplantation. As such stem cells and tissue engineered constructs are of great importance. This report describes the growth of multipotential human retinal progenitors (cell line) in a 3-D bioreactor culture vessel with (adhesive substrate) laminin coated collagen 1/cytodex beads and without adhesive substrate (beadless culture). The study demonstrates that progenitors are capable of growth and differentiation in the bioreactor with or without beads. The presence of adhesive substrate accelerates and enhances photoreceptor differentiation in the bioreactor, reflected by significantly higher level expressions of several photoreceptor specific proteins; N acetyl transferase (AaNat), rhodopsin and cone transducin GNB3. Both monomeric and dimeric forms of rhodopsin are expressed in cells attached to beads, whereas, only the monomeric form is expressed in beadless culture. Similarly, a different isomeric form of tyrosine hydroxylase (a doublet) is expressed in cell bead attached cultures. Co-culturing retinal progenitors with retinal pigment epithelium (RPE) in cell bead cultures further stabilizes the photoreceptor phenotype and rhodopsin expression. Most of the retinal neuronal phenotypes are confirmed by an expression of specific proteins. The adhesive substrate in the form of collagen 1, laminin coated cytodex beads, could be just an effector for stabilization or a positive signal, modulating extracellular matrix (ECM) molecules and/or neurotrophins. In the future, the bioreactor culture system could be utilized to grow retina-like structures from ciliary epithelium by incorporating biodegradable substrates.  相似文献   

16.
The retinas of teleost fish grow continuously, in part, by neuronal hyperplasia and when lesioned will regenerate. Within the differentiated retina, the growth-associated hyperplasia results in the generation of new rod photoreceptors only, whereas injury-induced neurogenesis results in the regeneration of all retinal cell types. It is believed, however, that both new rod photoreceptors and regenerated neurons originate from the same populations of intrinsic progenitors. Experiments are described here that attempt to identify in the normal retina of goldfish neuronal progenitors intrinsic to the retina, particularly those which have remained cryptic because they divide infrequently. Long-term, systemic exposure to bromodeoxyuridine (BrdU) was used to label these cells. Five populations of proliferative cells were labeled: microglia, which are briefly described but not studied further; retinal progenitors in the circumferential germinal zone (CGZ); and rod precursors in the outer nuclear layer (ONL), both of which have been well characterized previously; and two populations of slowly-dividing cells in the inner nuclear layer (INL). The majority of these cells have a fusiform morphology, whereas the remaining ones are spherical. Longitudinal BrdU labeling suggests that the fusiform cells migrate to the ONL to replenish the pool of rod precursors. A subset of the spherical cells express pax6, although none are stained with markers of differentiated amacrine or bipolar cells. It is hypothesized that these rare, pax6-expressing cells are retinal stem cells, which give rise to the pax6-negative fusiform cells. Based on these data, two models are proposed: the first describes the lineage of rod photoreceptors in goldfish; the second is a consensus model of neurogenesis in the retinas of all teleosts.  相似文献   

17.
Math5 determines the competence state of retinal ganglion cell progenitors   总被引:5,自引:0,他引:5  
Yang Z  Ding K  Pan L  Deng M  Gan L 《Developmental biology》2003,264(1):240-254
  相似文献   

18.
Progenitor cells isolated from early rat embryo retinas differentiate into phenotypes normally generated early in retinal development (e.g., ganglion cells), whereas progenitors isolated from postnatal retinas differentiate into later-generated retinal cell types (e.g., rod photoreceptors; Reh and Kljavin, J. Neurosci. 9:4179-4189; 1989; Adler and Hatlee, 1989; Science 243:391-393; Sparrow, Hicks, and Barnstable, 1990, Dev. Brain Res. 51:69-84). To determine whether this change in committment is intrinsic to the progenitor cells, or alternatively can be modified by interactions with their developing environment, I co-cultured mouse and rat retinal cells, from different developmental stages, and identified the resulting phenotypes with species-specific and cell class-specific antibodies. I found that the phenotypes into which mouse neuroepithelial cells differentiate depends on the phenotypes of the rat cells that surround them. Retinal precursor cells from embryonic day (E) 10-12 will adopt the rod photoreceptor phenotype only when close to cells expressing this phenotype. By contrast, when the E10-12 retinal progenitor cells are cultured with cells from the cerebral cortex, they differentiate primarily into large multipolar neurons, similar in their morphology and antigen expression to retinal ganglion cells. These results indicate that interactions among the cells of the developing retina are important in the determination of cell fate.  相似文献   

19.
Retinopathy of prematurity, a leading cause of visual impairment in low birth‐weight infants, remains a crucial therapeutic challenge. Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that promotes rod and cone photoreceptor survival and cone outer segment regeneration in the degenerating retina. Ciliary neurotrophic factor expression is regulated by many factors such as all‐trans retinoic acid (ATRA). In this study, we found that ATRA increased CNTF expression in mouse retinal pigment epithelial (RPE) cells in a dose‐ and time‐dependent manner, and PKA signaling pathway is necessary for ATRA‐induced CNTF upregulation. Furthermore, we showed that ATRA promoted CNTF expression through CREB binding to its promoter region. In addition, CNTF levels were decreased in serum of retinopathy of prematurity children and in retinal tissue of oxygen‐induced retinopathy mice. In mouse RPE cells cultured with high oxygen, CNTF expression and secretion were decreased, but could be recovered after treatment with ATRA. In conclusion, our data suggest that ATRA administration upregulates CNTF expression in RPE cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号