首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Philipps G  Happe T  Hemschemeier A 《Planta》2012,235(4):729-745
The unicellular green alga Chlamydomonas reinhardtii is able to use photosynthetically provided electrons for the production of molecular hydrogen by an [FeFe]-hydrogenase HYD1 accepting electrons from ferredoxin PetF. Despite the severe sensitivity of HYD1 towards oxygen, a sustained and relatively high photosynthetic hydrogen evolution capacity is established in C. reinhardtii cultures when deprived of sulfur. One of the major electron sources for proton reduction under this condition is the oxidation of starch and subsequent non-photochemical transfer of electrons to the plastoquinone pool. Here we report on the induction of photosynthetic hydrogen production by Chlamydomonas upon nitrogen starvation, a nutritional condition known to trigger the accumulation of large deposits of starch and lipids in the green alga. Photochemistry of photosystem II initially remained on a higher level in nitrogen-starved cells, resulting in a 2-day delay of the onset of hydrogen production compared with sulfur-deprived cells. Furthermore, though nitrogen-depleted cells accumulated large amounts of starch, both hydrogen yields and the extent of starch degradation were significantly lower than upon sulfur deficiency. Starch breakdown rates in nitrogen or sulfur-starved cultures transferred to darkness were comparable in both nutritional conditions. Methyl viologen treatment of illuminated cells significantly enhanced the efficiency of photosystem II photochemistry in sulfur-depleted cells, but had a minor effect on nitrogen-starved algae. Both the degradation of the cytochrome b 6 f complex which occurs in C. reinhardtii upon nitrogen starvation and lower ferredoxin amounts might create a bottleneck impeding the conversion of carbohydrate reserves into hydrogen evolution.  相似文献   

2.
Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.  相似文献   

3.
Hydrogen evolution and consumption by cell and chromatophore suspensions of the photosynthetic bacterium Rhodopseudomonas capsulata was measured with a sensitive and specific mass spectrometric technique which directly monitors dissolved gases. H2 production by nitrogenase was inhibited by acetylene and restored by carbon monoxide. An H2 evolution activity coupled with HD formation and D2 uptake (H-D exchange) was unaffected by C2H2 and CO. Cultures lacking nitrogenase activity also exhibited H-D exchange activity, which was catalyzed by a membrane-bound hydrogenase present in the chromatophores of R. capsulata. A net hydrogen uptake, mediated by hydrogenase, was observed when electron acceptors such as CO2, O2, or ferricyanide were present in the medium.  相似文献   

4.
Zhang L  Happe T  Melis A 《Planta》2002,214(4):552-561
Sulfur deprivation in green algae causes reversible inhibition of photosynthetic activity. In the absence of S, rates of photosynthetic O2 evolution drop below those of O2 consumption by respiration. As a consequence, sealed cultures of the green alga Chlamydomonas reinhardtii become anaerobic in the light, induce the "Fe-hydrogenase" pathway of electron transport and photosynthetically produce H2 gas. In the course of such H2-gas production cells consume substantial amounts of internal starch and protein. Such catabolic reactions may sustain, directly or in directly, the H2-production process. Profile analysis of selected photosynthetic proteins showed a precipitous decline in the amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a function of time in S deprivation, a more gradual decline in the level of photosystem (PS) II and PSI proteins, and a change in the composition of the PSII light-harvesting complex (LHC-II). An increase in the level of the enzyme Fe-hydrogenase was noted during the initial stages of S deprivation (0-72 h) followed by a decline in the level of this enzyme during longer (t >72 h) S-deprivation times. Microscopic observations showed distinct morphological changes in C. reinhardtii during S deprivation and H2 production. Ellipsoid-shaped cells (normal photosynthesis) gave way to larger and spherical cell shapes in the initial stages of S deprivation and H2 production, followed by cell mass reductions after longer S-deprivation and H2-production times. It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii. Interplay between oxygenic photosynthesis, mitochondrial respiration, catabolism of endogenous substrate, and electron transport via the hydrogenase pathway is essential for this light-mediated H2-production process.  相似文献   

5.
Abstract The enzyme activities responsible for the evolution and consumption of hydrogen in three unicellular cyanobacteria were investigated. Gloeothece sp. 6909 and Cyanothece sp. 7822 performed an oxygen-tolerant nitrogen fixation, whereas the nitrogenase activity of Synechococcus sp. 7425 was much more sensitive to oxygen. While in Gloeothece the net hydrogen production during nitrogen fixation was relatively low due to recycling by an uptake hydrogenase, little hydrogen consumption was detected in Cyanothece and Synechococcu . On the other hand a reversible hydrogenase was demonstrated in the latter strains. However, only Cyanothece shows hydrogenase-catalysed hydrogen production in vivo under anaerobic conditions in the dark. It is suggested that hydrogen is a fermentation product, and that the physiological function of this reversible hydrogenase is the removal of excess reduction equivalents under such conditions.  相似文献   

6.
Five varieties of Sorghum bicolor (L.) Moench., differing in their drought tolerance under field conditions have been used to study the effect of individual components of drought stress, namely high light intensity stress, heat stress and water stress, on their photosynthetic performance. Chlorophyll content, chlorophyll fluorescence, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39) content, phosphoenolpyruvate carboxylase (PEPcase, EC 4.1.1.31) activity and photo-synthetic oxygen evolution were used as key parameters to assess photosynthetic performance. The results indicated that photochemical efficiency of photosystem II (PSII) was severely reduced by all three stress components, whereas PEPcase activity was more specifically reduced by water stress. Degradation of Rubisco and chlorophyll loss occurred under high light and water stress conditions. Of the four drought-tolerant varieties, E 36-1 showed higher PEPcase activity, Rubisco content and photochemical efficiency of PSII, and was able to sustain a higher maximal rate of photosynthetic oxygen evolution under each stress condition as compared to the other varieties. A high stability to stress-induced damage, or acclimation of photosynthesis to the individual components of drought stress may contribute to the high yields of E 36-1 under drought conditions. In the E 36-1 variety markedly higher levels of the chloroplastic chaperonin 60 (cpn 60) were observed under all stress conditions than in the susceptible variety CSV 5.Key words: Chlorophyll fluorescence, drought stress, oxygen evolution, phosphoenopyruvate carboxylase, Sorghum.   相似文献   

7.
Scenedesmus obliquus and Chlorella vulgaris cells had active hydrogenase after dark anaerobic adaptation. Illumination of these algae with visible light led to an initial production of small quantities of hydrogen gas which soon ceased owing to production of oxygen by photolysis of water. The presence of oxygen-absorbing systems in a separate chamber, not in contact with the algae, gave only a slight stimulation of hydrogen production. Addition of sodium dithionite directly to the algae led to an extensive light-dependent production of hydrogen. This stimulation was due to oxygen removal by dithionite and not to its serving as an electron donor. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, an inhibitor of photosystem II, abolished all hydrogen photoproduction. Hydrogen evolution was not accompanied by CO2 production and little difference was noted between autotrophically and heterotrophically grown cells. Hydrogen was not produced in a photosystem II mutant of Scenedesmus even in the presence of dithionite, establishing that water was the source of hydrogen via photosystems II and I. Hydrogen production was stimulated by the presence of glucose and glucose oxidase as an oxygen-absorbing system. Oxygen inhibited hydrogen photoproduction, even if oxygen was undetectable in the gas phase, if the algal solution did not contain an oxygen absorber. It was demonstrated that under these conditions hydrogenase was still active and the inability to produce hydrogen was probably due to oxidation of the coupling electron carrier.  相似文献   

8.
Chlamydomonas reinhardtii cultures, deprived of inorganic sulfur, undergo dramatic changes during adaptation to the nutrient stress [Biotechnol. Bioeng. 78 (2002) 731]. When the capacity for Photosystem II (PSII) O(2) evolution decreases below that of respiration, the culture becomes anaerobic [Plant Physiol. 122 (2000) 127]. We demonstrate that (a) the photochemical activity of PSII, monitored by in situ fluorescence, also decreases slowly during the aerobic period; (b) at the exact time of anaerobiosis, the remaining PSII activity is rapidly down regulated; and (c) electron transfer from PSII to PSI abruptly decreases at that point. Shortly thereafter, the PSII photochemical activity is partially restored, and H(2) production starts. Hydrogen production, which lasts for 3-4 days, is catalyzed by an anaerobically induced, reversible hydrogenase. While most of the reductants used directly for H(2) gas photoproduction come from water, the remaining electrons must come from endogenous substrate degradation through the NAD(P)H plastoquinone (PQ) oxido-reductase pathway. We propose that the induced hydrogenase activity provides a sink for electrons in the absence of other alternative pathways, and its operation allows the partial oxidation of intermediate photosynthetic carriers, including the PQ pool, between PSII and PSI. We conclude that the reduced state of this pool, which controls PSII photochemical activity, is one of the main factors regulating H(2) production under sulfur-deprived conditions. Residual O(2) evolved under these conditions is probably consumed mostly by the aerobic oxidation of storage products linked to mitochondrial respiratory processes involving both the cytochrome oxidase and the alternative oxidase. These functions maintain the intracellular anaerobic conditions required to keep the hydrogenase enzyme in the active, induced form.  相似文献   

9.
In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.  相似文献   

10.
Two pathways of hydrogen uptake in Nostoc muscorum are apparent using either oxygen or nitrogen as electron acceptor. Hydrogen uptake (under argon with some oxygen as electron acceptor assayed in the dark; oxyhydrogen reaction) is found to be more active in dense, light-limited cultures than in thin cultures when light is not limiting. Addition of bicarbonate inhibits this hydrogen uptake, because photosynthesis is stimulated. In a cell-free hydrogenase assay, a 10-fold increase of the activity can be measured, after the cells having been kept under lightlimiting conditions. After incubation under light-saturating conditions, no hydrogen uptake is found, when filaments are assayed under argon plus some oxygen. Assaying these cells under a nitrogen atmosphere, a strong hydrogen uptake occurs. The corresponding cell-free hydrogenase assay exhibits low hydrogenase activity. Furthermore, the hydrogen uptake by intact filaments under nitrogen in the light apparently is correlated with nitrogenase activity. These studies give evidence that, under certain physiological conditions, hydrogen uptake of heterocysts proceeds directly via nitrogenase, with no hydrogenase involved.Abbreviations Chl chlorophyll - DCMU (diuron) 3-3,4-dichlorophenyl)-1,1-dimethylurea - pev packed cell volume  相似文献   

11.
Franziska Gutthann 《BBA》2007,1767(2):161-169
In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.  相似文献   

12.
Acetylene reduction, deuterium uptake and hydrogen evolution were followed in in-vivo cultures of Azospirillum brasilense, strain Sp 7, by a direct mass-spectrometric kinetic method. Although oxygen was needed for nitrogenase functioning, the enzyme was inactivated by a fairly low oxygen concentration in the culture and an equilibrium had to be found between the rate of oxygen diffusion and bacterial respiration. A nitrogenase-mediated hydrogen evolution was observed only in the presence of carbon monoxide inhibiting the uptake hydrogenase activity which normally recycles all the hydrogen produced. However, under anaerobic conditions and in the presence of deuterium, a bidirectional hydrogenase activity was observed, consisting in D2 uptake and in H2 and HD evolution. In contrast to the nitrogenase-mediated H2 production, this anaerobic H2 and HD evolution was insensitive to the presence of acetylene and was partly inhibited by carbon monoxide. It was moreover relatively unaffected by the deuterium partial pressure. These results suggest that the anaerobic H2 and HD evolution can be ascribed to a reverse hydrogenase activity under conditions where D2 is saturating the uptake process and scavenging the electron acceptors. Although the activities of both nitrogenase and hydrogenase were thus clearly differentiated, a close relationship was found between their respective functioning conditions.  相似文献   

13.
Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H(2)) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H(2) productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H(2) production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1-State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the high throughput application of absorption/fluorescence optical spectroscopy methods. Strong and weak points of this approach are discussed.  相似文献   

14.
Summary Nitrogen fixing cultures of the cyanobacteriumNostoc muscorum lacked hydrogen evolution but cultures infected with cyanophage N-1 showed significant hydrogen evolution and inactive nitrogenase, suggesting that nitrogenase activity is not responsible for the observed oxygen-resistant photoproduction of hydrogen. Significant oxygen-resistant hydrogen production by nitrate or ammonium assimilating cultures deficient in both nitrogenase and uptake hydrogenase activity supports this conclusion. These findings suggest a role of uptake hydrogenase in blocking the production of hydrogen during aerobic photosynthetic conditions.  相似文献   

15.
Membrane-associated hydrogenase was purified from the chemolithoautotrophic epsilonproteobacterium Hydrogenimonas thermophila at 152-fold purity. The hydrogenase was found to be localized in the periplasmic space, and was easily solubilized with 0.1% Triton X-100 treatment. Hydrogen oxidation activity was 1,365 μmol H2/min/mg of protein at 80 °C at pH 9.0, with phenazine methosulphate as the electron acceptor. Hydrogen production activity was 900 μmol H2/min/mg of protein at 80 °C and pH 6.0, with reduced methyl viologen as the electron donor. The hydrogenase from this organism showed higher oxygen tolerance than those from other microorganisms showing hydrogen oxidation activity. The structural genes of this hydrogenase, which contains N-terminal amino acid sequences from both small and large subunits of purified hydrogenase, were successfully elucidated. The hydrogenase from H. thermophila was found to be phylogenetically related with H2 uptake hydrogenases from pathogenic Epsilonproteobacteria.  相似文献   

16.
The activity of hydrogenase in intact cells of the unicellular cyanobacterium Cyanothece PCC 7822 was investigated using a mass spectrometer with a permeable membrane inlet. A small hydrogenase-catalyzed hydrogen production was observed with nitrate-grown cells under anoxic conditions in the dark. The same cells were also capable of a much greater rate of hydrogen uptake, induced by oxygen as well as light. Light-induced hydrogen uptake was inhibited by uncoupler. In contrast, addition of uncoupler caused a four-fold stimulation of anoxic hydrogen production in the dark. It is suggested that anoxic hydrogen production is the result of fermentative metabolism.Cyanobacteria are generally considered to have at least two distinct hydrogenases (Houchins 1984). One is a membrane-bound uptake hydrogenase which appears to be associated with nitrogen fixation, removing the hydrogen produced by nitrogenase with the concomitant production of reductant or ATP (Eisbrenner et al. 1978). The second is a reversible hydrogenase located in the cytoplasm and not closely linked to nitrogen metabolism. The reversible character of this enzyme can be demonstrated in the presence of suitable electron donors or acceptors; hydrogen consumption and evolution occur at similar rates (Lambert and Smith 1980).A reversible hydrogenase capable of reducing protons with the artificial electron donor couple dithionite and methyl viologen is widely distributed amongst cyanobacteria. However its physiological role remains unclear. The enzyme appears to be sensitive to oxygen, and consequently in vivo activity can only be demonstrated under anoxic conditions (Houchins 1984).On the basis of in vivo measurements with tritium and the observed low K m for hydrogen, the function of the reversible hydrogenase of the heterocystous cyanobacterium Anabaena has been proposed to be the uptake of hydrogen as a means of collecting additional reducing power during growth in light-limited anoxic environments (Spiller et al. 1983; Houchins 1984). However, Hallenbeck et al. (1981) reported a modest production of hydrogen by intact filaments of Anabaena.An example of a function of the reversible hydrogenase in the production of hydrogen is provided by the nonheterocystous filamentous cyanobacterium Oscillatoria limnetica. This organism is capable of shifting between oxygenic and anoxygenic photosynthesis (Oren and Padan 1978). In the latter case sulfide is the electron donor supporting photoreduction of CO2 via photosystem I only. However when CO2 is limiting, excess reducing equivalents are removed by a reversible hydrogenase (Belkin and Padan 1978). This hydrogen production probably enables the organism to continue photophosphorylation under these conditions.We recently reported that the unicellular cyanobacterium Cyanothece 7822 is capable of hydrogenase-catalyzed hydrogen production in vivo, without the addition of artificial reductants (Van der Oost et al. 1987). In this paper we have investigated the in vivo activity of the hydrogenase in Cyanothece by monitoring the concentrations of dissolved H2 and O2 in the cell suspension using a mass spectrometer with a permeable membrane inlet.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU N-(3,4-dichlorophenyl) N,N-dimethylurea - FCCP carbonylcyanide-p-trifluoromethoxy phenylhydrazone - PBQ phenyl benzoquinone  相似文献   

17.
Hydrogen is definitely one of the most acceptable fuels in the future. Some photosynthetic microorganisms, such as green algae and cyanobacteria, can produce hydrogen gas from water by using solar energy. In green algae, hydrogen evolution is coupled to the photosynthetic electron transport in thylakoid membranes via reaction catalyzed by the specific enzyme, (FeFe)-hydrogenase. However, this enzyme is highly sensitive to oxygen and can be quickly inhibited when water splitting is active. A problem of incompatibility between the water splitting and hydrogenase reaction can be overcome by depletion of algal cells of sulfur which is essential element for life. In this review the mechanisms underlying sustained hydrogen photoproduction in sulfur deprived C. reinhardtii and the recent achievements in studying of this process are discussed. The attention is focused on the biophysical and physiological aspects of photosynthetic response to sulfur deficiency in green algae.  相似文献   

18.
Ten seaweed species were surveyed for simultaneous photoevolution of hydrogen and oxygen. In an attempt to induce hydrogenase activity (as measured by hydrogen photoproduction) the seaweeds were maintained under anaerobiosis in CO2-free seawater for varying lengths of time. Although oxygen evolution was observed in every alga studied, hydrogen evolution was not observed. One conclusion of this research is that, in contrast to the microscopic algae, there is not a single example of a macroscopic alga for which the photoevolution of hydrogen has been observed, in spite of the fact that there are now at least nine macroscopic algal species known for which hydrogenase activity has been reported (either by dark hydrogen evolution or light-activated hydrogen uptake). These results are in conflict with the conventional view that algal hydrogenase can catalyze a multiplicity of reactions, one of which is the photoproduction of molecular hydrogen. Two possible explanations for the lack of hydrogen photoproduction in macroscopic algae are presented. It is postulated that electron acceptors other than carbon dioxide can take up reducing equivalents from Photosystem I to the measurable exclusion of hydrogen photoproduction. Alternatively, the hydrogenase system in macroscopic algae may be primarily a hydrogen-uptake system with respect to light-activated reactions. A simple kinetic argument based on recent measurements of the photosynthetic turnover times of simultaneous light-activated hydrogen and oxygen production is presented that supports the second explanation.  相似文献   

19.
In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over‐reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress‐related genes, down‐regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50‐fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn‐cluster of PSII, and afterwards, it can donate electrons to tyrozin Z+ at a slow rate. This stage is followed by donor‐side‐induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation.  相似文献   

20.
Several unicellular and filamentous, nitrogen-fixing and non-nitrogen-fixing cyanobacterial strains have been investigated on the molecular and the physiological level in order to find the most efficient organisms for photobiological hydrogen production. These strains were screened for the presence or absence of hup and hox genes, and it was shown that they have different sets of genes involved in H2 evolution. The uptake hydrogenase was identified in all N2-fixing cyanobacteria, and some of these strains also contained the bidirectional hydrogenase, whereas the non-nitrogen fixing strains only possessed the bidirectional enzyme. In N2-fixing strains, hydrogen was mainly produced by the nitrogenase as a by-product during the reduction of atmospheric nitrogen to ammonia. Therefore, hydrogen production was investigated both under non-nitrogen-fixing conditions and under nitrogen limitation. It was shown that the hydrogen uptake activity is linked to the nitrogenase activity, whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependent or even related to diazotrophic growth conditions. With regard to large-scale hydrogen evolution by N2-fixing cyanobacteria, hydrogen uptake-deficient mutants have to be used because of their inability to re-oxidize the hydrogen produced by the nitrogenase. On the other hand, fermentative H2 production by the bidirectional hydrogenase should also be taken into account in further investigations of biological hydrogen production.Abbreviations Chl chlorophyll - MV methyl viologen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号