首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Remodeling of endothelial basement membrane is important in atherogenesis. Since little is known about the actual relationship between type IV collagen and matrix metalloprotease−2 (MMP-2) in endothelial cells (ECs) under shear stress by blood flow, we performed quantitative analysis for type IV collagen and MMP-2 in ECs under high shear stress. The mRNA of type IV collagen from ECs exposed to high shear stress (10 and 30 dyn/cm2) had a higher expression compared to ECs exposed to a static condition or low shear stress (3 dyn/cm2) (P < 0.01). 3H-proline uptake analysis and fluorography revealed a remarkable increase of type IV collagen under high shear stress (P < 0.01). In contrast, zymography revealed that exposing to high shear stress, however similar positivity was leveled in the intracellular MMP-2 in the control and high shear stress-exposed ECs, reduced the secretion of MMP-2 in ECs. The results of Northern blotting, gelatin zymography and monitoring the intracellular trafficking of GFP-labeled MMP-2 revealed that MMP-2 secretion by ECs was completely suppressed by high shear stress, but the intracellular mRNA expression, protein synthesis, and transport of MMP-2 were not affected. In conclusion, we suggest that high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in ECs, which plays an important role in remodeling of the endothelial basement membrane and may suppress atherogenesis.  相似文献   

2.
Endothelial cells (ECs) that line the inner surface of blood vessels are continuously exposed to fluid frictional force (shear stress) induced by blood flow, and shear stress affects the intracellular calcium ([Ca2+]i), which initiates cellular responses. Here, we studied the effect of long-term exposure of shear stress on [Ca2+]i responses in cultured ECs by using a confocal laser microscope and calcium indicator. At the initiation of shear stress of 20 dyn/cm2 (0 hr), 27% of the cells exhibited [Ca2+]i responses. This percentage gradually decreased with increasing exposure time, reaching about 4% after 24 hr of exposure. These data indicate that long-term shear-stress exposure affects [Ca2+]i responses in cultured ECs. Furthermore, we studied the effect of magnitude of shear stress on macromolecule uptake. For the low shear-stress, the uptake was enhanced, whereas the uptake was inhibited for higher shear-stress.  相似文献   

3.
Ischemia (I)/reperfusion (RP)-induced endothelial cell (EC) injury is thought to be due to mitochondrial reactive oxygen species (mtROS) production. MtROS have been implicated in mitochondrial fission. We determined whether cultured EC exposure to simulated I/RP causes morphological changes in the mitochondrial network and the mechanisms behind those changes. Because shear stress results in nitric oxide (NO)-mediated endothelial mtROS generation, we simulated I/RP as hypoxia (H) followed by oxygenated flow over the ECs (shear stress of 10dyn/cm(2)). By exposing ECs to shear stress, H, H/reoxygenation (RO), or simulated I/RP and employing MitoTracker staining, we assessed the differential effects of changes in mechanical forces and/or O(2) levels on the mitochondrial network. Static or sheared ECs maintained their mitochondrial network. H- or H/RO-exposed ECs underwent changes, but mitochondrial fission was significantly less compared to that in ECs exposed to I/RP. I/RP-induced fission was partially inhibited by antioxidants, a NO synthase inhibitor, or an inhibitor of the fission protein dynamin-related protein 1 (Drp1) and was accompanied by Drp1 oligomerization and phosphorylation (Ser616). Hence, shear-induced NO, ROS (including mtROS), and Drp1 activation are responsible for mitochondrial fission in I/RP-exposed ECs, and excessive fission may be an underlying cause of EC dysfunction in postischemic hearts.  相似文献   

4.
Zeng Y  Sun HR  Yu C  Lai Y  Liu XJ  Wu J  Chen HQ  Liu XH 《Cytokine》2011,53(1):42-51
The migration of endothelial cells (ECs) plays critical roles in vascular physiology and pathology. The receptors CXCR1 and CXCR2, known as G protein-coupled receptors which are essential for migratory response of ECs toward the shear stress-dependent CXCL8 (interleukin-8), are potential mechano-sensors for mechanotransduction of the hemodynamic forces. In present study, the mRNA and protein expression of CXCR1 and CXCR2 in EA.hy926 cells was detected by RT-PCR and Western blot analysis under three conditions of laminar shear stress (5.56, 10.02 and 15.27 dyn/cm(2)) respectively. Using a scratched-wound assay, the effects of CXCR1 and CXCR2 were assessed by the percentage of wound closure while CXCR1 and CXCR2 were functional blocked by the CXCL8 receptor antibodies. The results showed that the mRNA and protein expression of CXCR1 and CXCR2 was both upregulated by 5.56 dyn/cm(2) laminar shear stress, but was both downregulated by 15.27 dyn/cm(2). The wound closure was inhibited significantly while cells were treated with those antibodies in all the conditions. It was suggested that CXCR1 and CXCR2 are involved in mediating the laminar shear stress-induced EC migration. Taken together, these findings indicated that CXCR1 and CXCR2 are novel mechano-sensors mediating laminar shear stress-induced EC migration. Understanding this expanded mechanism of laminar shear stress-induced cell migration will provide novel molecular targets for therapeutic intervention in cancer and cardiovascular diseases.  相似文献   

5.
Vascular endothelial cells (ECs) distinguish among and respond differently to different types of fluid mechanical shear stress. Elucidating the mechanisms governing this differential responsiveness is the key to understanding why early atherosclerotic lesions localize preferentially in arterial regions exposed to low and/or oscillatory flow. An early and very rapid endothelial response to flow is the activation of flow-sensitive K+ and Cl channels that respectively hyperpolarize and depolarize the cell membrane and regulate several important endothelial responses to flow. We have used whole cell current- and voltage-clamp techniques to demonstrate that flow-sensitive hyperpolarizing and depolarizing currents respond differently to different types of shear stress in cultured bovine aortic ECs. A steady shear stress level of 10 dyn/cm2 activated both currents leading to rapid membrane hyperpolarization that was subsequently reversed to depolarization. In contrast, a steady shear stress of 1 dyn/cm2 only activated the hyperpolarizing current. A purely oscillatory shear stress of 0 ± 10 dyn/cm2 with an oscillation frequency of either 1 or 0.2 Hz activated the hyperpolarizing current but only minimally the depolarizing current, whereas a 5-Hz oscillation activated neither current. These results demonstrate for the first time that flow-activated ion currents exhibit different sensitivities to shear stress magnitude and oscillation frequency. We propose that flow-sensitive ion channels constitute components of an integrated mechanosensing system that, through the aggregate effect of ion channel activation on cell membrane potential, enables ECs to distinguish among different types of flow. ion channels; atherosclerosis; mechanotransduction  相似文献   

6.
Vascular endothelial cells (ECs) are constantly subjected to blood flow-induced shear stress and the influences of neighboring smooth muscle cells (SMCs). In the present study, a coculture flow system was developed to study the effect of shear stress on EC-SMC interactions. ECs and SMCs were separated by a porous membrane with only the EC side subjected to the flow condition. When ECs were exposed to a shear stress of 12 dynes/cm2 for 24 h, the cocultured SMCs tended to orient perpendicularly to the flow direction. This perpendicular orientation of the cocultured SMCs to flow direction was not observed when ECs were exposed to a shear stress of 2 dynes/cm2. Under the static condition, long and parallel actin bundles were observed in the central regions of the cocultured SMCs, whereas the actin filaments localized mainly at the periphery of the cocultured ECs. After 24 h of flow application, the cocultured ECs displayed very long, well-organized, parallel actin stress fibers aligned with the flow direction in the central regions of the cells. Immunostaining of platelet endothelial cell adhesion molecule-1 confirmed the elongation and alignment of the cocultured ECs with the flow direction. Coculture with SMCs under static condition induced EC gene expressions of growth-related oncogene-alpha and monocyte chemotactic protein-1, and shear stress was found to abolish these SMC-induced gene expressions. Our results suggest that shear stress may serve as a down-regulator for the pathophysiologically relevant gene expression in ECs cocultured with SMCs.  相似文献   

7.
Hemodynamic shear stress guides a variety of endothelial phenotype characteristics, including cell morphology, cytoskeletal structure, and gene expression profile. The sensing and processing of extracellular fluid forces may be mediated by mechanotransmission through the actin cytoskeleton network to intracellular locations of signal initiation. In this study, we identify rapid actin-mediated morphological changes in living subconfluent and confluent bovine aortic endothelial cells (ECs) in response to onset of unidirectional steady fluid shear stress (15 dyn/cm2). After flow onset, subconfluent cells exhibited dynamic edge activity in lamellipodia and small ruffles in the downstream and side directions for the first 12 min; activity was minimal in the upstream direction. After 12 min, peripheral edge extension subsided. Confluent cell monolayers that were exposed to shear stress exhibited only subtle increases in edge fluctuations after flow onset. Addition of cytochalasin D to disrupt actin polymerization served to suppress the magnitude of flow-mediated actin remodeling in both subconfluent confluent EC monolayers. Interestingly, when subconfluent ECs were exposed to two sequential flow step increases (1 dyn/cm2 followed by 15 dyn/cm2 12 min later), actin-mediated edge activity was not additionally increased after the second flow step. Thus, repeated flow increases served to desensitize mechanosensitive structural dynamics in the actin cytoskeleton.  相似文献   

8.
Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs). To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ) remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1) is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs), transfected (or not) with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m2) and AJ proteins (VE-cadherin and β-catenin) and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This “switch” was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress.  相似文献   

9.
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases.  相似文献   

10.
The glycocalyx layer on the surface of an endothelial cell is an interface barrier for uptake of macromolecules, such as low-density lipoprotein and albumin, in the cell. The shear-dependent uptake of macromolecules thus might govern the function of the glycocalyx layer. We therefore studied the effect of glycocalyx on the shear-dependent uptake of macromolecules into endothelial cells. Bovine aorta endothelial cells were exposed to shear stress stimulus ranging from 0.5 to 3.0 Pa for 48 h. The albumin uptake into the cells was then measured using confocal laser scanning microscopy, and the microstructure of glycocalyx was observed using electron microscopy. Compared with the uptake into endothelial cells under static conditions (no shear stress stimulus), the albumin uptake at a shear stress of 1.0 Pa increased by 16% and at 3.0 Pa decreased by 27%. Compared with static conditions, the thickness of the glycocalyx layer increased by 70% and the glycocalyx charge increased by 80% at a shear stress of 3.0 Pa. The albumin uptake at a shear stress of 3.0 Pa for cells with a neutralized (no charge) glycocalyx layer was almost twice that of cells with charged layer. These findings indicate that glycocalyx influences the albumin uptake at higher shear stress and that glycocalyx properties (thickness and charge level) are involved with the shear-dependent albumin uptake process.  相似文献   

11.
Hemodynamic forces play an active role in vascular pathologies, particularly in relation to the localization of atherosclerotic lesions. It has been established that low shear stress combined with cyclic reversal of flow direction (oscillatory shear stress) affects the endothelial cells and may lead to an initiation of plaque development. The aim of the study was to analyze the effect of hemodynamic conditions in arterial segments perfused in vitro in the absence of other stimuli. Left common porcine carotid segments were mounted into an ex vivo arterial support system and perfused for 3 days under unidirectional high and low shear stress (6 +/- 3 and 0.3 +/- 0.1 dyn/cm(2)) and oscillatory shear stress (0.3 +/- 3 dyn/cm(2)). Bradykinin-induced vasorelaxation was drastically decreased in arteries exposed to oscillatory shear stress compared with unidirectional shear stress. Impaired nitric oxide-mediated vasodilation was correlated to changes in both endothelial nitric oxide synthase (eNOS) gene expression and activation in response to bradykinin treatment. This study determined the flow-mediated effects on native tissue perfused with physiologically relevant flows and supports the hypothesis that oscillatory shear stress is a determinant factor in early stages of atherosclerosis. Indeed, oscillatory shear stress induces an endothelial dysfunction, whereas unidirectional shear stress preserves the function of endothelial cells. Endothelial dysfunction is directly mediated by a downregulation of eNOS gene expression and activation; consequently, a decrease of nitric oxide production and/or bioavailability occurs.  相似文献   

12.
Repair of the endothelium occurs in the presence of continued blood flow, yet the mechanisms by which shear forces affect endothelial wound closure remain elusive. Therefore, we tested the hypothesis that shear stress enhances endothelial cell wound closure. Human umbilical vein endothelial cells (HUVEC) or human coronary artery endothelial cells (HCAEC) were cultured on type I collagen-coated coverslips. Cell monolayers were sheared for 18 h in a parallel-plate flow chamber at 12 dyn/cm(2) to attain cellular alignment and then wounded by scraping with a metal spatula. Subsequently, the monolayers were exposed to a laminar shear stress of 3, 12, or 20 dyn/cm(2) under shear-wound-shear (S-W-sH) or shear-wound-static (S-W-sT) conditions for 6 h. Wound closure was measured as a percentage of original wound width. Cell area, centroid-to-centroid distance, and cell velocity were also measured. HUVEC wounds in the S-W-sH group exposed to 3, 12, or 20 dyn/cm(2) closed to 21, 39, or 50%, respectively, compared with only 59% in the S-W-sT cells. Similarly, HCAEC wounds closed to 29, 49, or 33% (S-W-sH) compared with 58% in the S-W-sT cells. Cell spreading and migration, but not proliferation, were the major mechanisms accounting for the increases in wound closure rate. These results suggest that physiological levels of shear stress enhance endothelial repair.  相似文献   

13.
血流剪切力在动脉粥样硬化形成中的作用   总被引:1,自引:0,他引:1  
血管内皮位于血管壁和血液的界面,直接与血流接触而持续受血流剪切力的作用。血管内皮细胞能感受血流机械力的变化,通过激活相应的信号通路调节血管内皮和平滑肌的结构和功能。研究发现,血液流动力的形式与动脉粥样硬化的发生发展有密切的关系。本综述将就血流剪切力与动脉粥样硬化的相互关系及作用机制的最新研究进展作简要介绍。  相似文献   

14.
Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm2. Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.  相似文献   

15.
Progenitor-derived endothelial cells (PDECs) isolated from human umbilical cord blood generate a great hope in the fields of vascular tissue engineering. Endothelial cells subjected to shear stress convert mechanical stimuli into intracellular signals that affect cellular functions. It is essential to ensure that PDECs are able to sense shear stress as mature endothelial cells from human saphenous veins (HSVECs) do with mitogen-activated protein (MAP) kinase and nuclear factor (NF)-kappaB signal transduction pathways. HSVECs and PDECs were seeded on glass slides coated with gelatin and exposed to 12dyn/cm(2) in a parallel-plate flow chamber. In both cell types, shear stress activated extracellular signal-related kinase (ERK)1/2 with a rapid time course (maximum 5min) followed by a reduced phosphorylation, and p38 pathway. c-Jun N-terminal protein kinase (JNK) phosphorylation is observed only in PDECs. With respect to NF-kappaB translocation to the nucleus, the NF-kappaB pathway is not activated by flow in HSVECs and PDECs although interleukin-1alpha (IL-1alpha) activates this pathway in both cell types. In our experimental conditions, shear stress does not modify the nuclear translocation of NF-kappaB in HSVECs after IL-1alpha stimulation. It can be stated that PDECs are shear stress sensitive and capable of signal transduction as mature HSVECs are, despite the unusual transduction response of both cell types.  相似文献   

16.
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.  相似文献   

17.
Laminar shear stress exerts potent anti-apoptotic effects. Therefore, we analyzed the influence of laminar shear stress on the expression of apoptosis-regulating genes in human umbilical vein endothelial cells (HUVEC). Application of high levels of laminar shear stress (15 and 30 dyn/cm(2)) decreased the susceptibility of HUVEC to undergo apoptosis, whereas low shear stress (1 dyn/cm(2)) had no effect. These diminished signs of apoptosis were accompanied by a decreased mRNA expression of apoptosis-inducing Fas receptor. Furthermore, mRNA and protein expression of anti-apoptotic, soluble Fas isoform FasExo6Del and anti-apoptotic Bcl-x(L) were induced. Surprisingly, high shear stress also elevated mRNA and protein expression of pro-apoptotic Bak. The shear stress-induced up-regulation of Bcl-x(L) and Bak mRNA can be abrogated by inhibition of the endothelial NO synthase. We propose that altered expression of Bcl-x(L) and the Fas system is involved in the protective effect of laminar shear stress against apoptosis in human endothelial cells.  相似文献   

18.

Objective

Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs) using in vitro and in vivo complementary studies.

Methods and Results

Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2) for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (ΔΨm). Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta) and muscle feed (femoral artery) arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds.

Conclusion

Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function.  相似文献   

19.
Ion transporters of blood-brain barrier (BBB) endothelial cells play an important role in regulating the movement of ions between the blood and brain. During ischemic stroke, reduction in cerebral blood flow is accompanied by transport of Na and Cl from the blood into the brain, with consequent brain edema formation. We have shown previously that a BBB Na-K-Cl cotransporter (NKCC) participates in ischemia-induced brain Na and water uptake and that a BBB Na/H exchanger (NHE) may also participate. While the abrupt reduction of blood flow is a prominent component of ischemia, the effects of flow on BBB NKCC and NHE are not known. In the present study, we examined the effects of changes in shear stress on NKCC and NHE protein levels in cerebral microvascular endothelial cells (CMECs). We have shown previously that estradiol attenuates both ischemia-induced cerebral edema and CMEC NKCC activity. Thus, in the present study, we also examined the effects of estradiol on NKCC and NHE protein levels in CMECs. Exposing CMECs to steady shear stress (19 dyn/cm(2)) increased the abundance of both NKCC and NHE. Estradiol abolished the shear stress-induced increase in NHE but not NKCC. Abrupt reduction of shear stress did not alter NKCC or NHE abundance in the absence of estradiol, but it decreased NKCC abundance in estradiol-treated cells. Our results indicate that changes in shear stress modulate BBB NKCC and NHE protein levels. They also support the hypothesis that estradiol attenuates edema formation in ischemic stroke in part by reducing the abundance of BBB NKCC protein.  相似文献   

20.
The interplay between shear stress and cytokines in regulating vascular endothelial function remains largely unexplored. In the present study, the potential role of shear stress in regulating tumor necrosis factor-alpha (TNF-alpha)-induced gene expression in endothelial cells (ECs) was investigated. The TNF-alpha-induced monocyte chemotactic protein-1 (MCP-1) mRNA expressions were significantly attenuated in ECs subjected to a high level of shear stress (20 dynes/cm2) for 4 or 24 h prior to the addition of TNF-alpha in the presence of flow. Less inhibition of TNF-alpha-induced MCP-1 mRNA expression was found in ECs pre-exposed to a low level of shear stress (1.2 dynes/cm2) for 24 h as compared with the cells presheared (pre-exposed to shear stress) for 4 h. Simultaneous exposure of ECs to TNF-alpha and a high or low level of shear stress down-regulated TNF-alpha-induced MCP-1 gene expressions, suggesting that the post-flow condition modulates endothelial responses to cytokine stimulation. Individually or combined, an endothelial nitric oxide synthase (eNOS) inhibitor and a glutathione (GSH) biosynthesis inhibitor had no effect on this shear stress-mediated inhibition. Moreover, in ECs either presheared or remained in a static condition prior to stimulation by TNF-alpha while under shear flow, the ability of TNF-alpha to induce AP-1-DNA binding activity in the nucleus was reduced. Our findings suggest that shear stress plays a protective role in vascular homeostasis by inhibiting endothelial responses to cytokine stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号