首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liver peroxisomes were prepared by using a Percoll gradient in a vertical rotor. beta-Oxidation was measured in peroxisomes isolated from livers of rats fed on either high-(15% by wt.) or low- (5% by wt.) fat diets. The feeding of high-fat diets gave a 1.4-2.4-fold increase in total liver peroxisomal beta-oxidation, and a similar increase in specific activity. A 1.5-4.5-fold increase was seen in the specific activity of purified peroxisomal preparations. The reasons for these increases are discussed.  相似文献   

2.
1. Heart microperoxisomal beta-oxidation activity, measured as cyanide-insensitive palmitoyl-CoA-dependent NAD+-reduction, was detected in a microperoxisome-enriched fraction from rat myocardium. The effect on this microperoxisomal beta-oxidation of the fatty acid composition of the dietary oils was investigated. 2. Feeding 15% (w/w) high erucic acid rapeseed oil or partially hydrogenated marine oil for 3 weeks increased the microperoxisomal beta-oxidation in the heart 4-5-fold, compared to a soybean oil diet. Increasing amounts (5-30%, w/w) of partially hydrogenated marine oil in the diet led to a 3-fold increase in the microperoxisomal beta-oxidation capacity at 20% or more of this oil in the diet. 3. The activity of the microperoxisomal marker enzyme catalase followed closely the cyanide-insensitive palmitoyl-CoA-dependent NAD+-reduction, except when feeding more than 20% (w/w) partially hydrogenated marine oil where a significant decrease in the catalase activity was observed. 4. In rapeseed oil-fed animals the extent of increase of microperoxisomal beta-oxidation was directly correlated to the amount of erucic acid (22:1, n-9 cis) in the diet. 5. Feeding partially hydrogenated rapeseed oil or partially hydrogenated soybean oil resulted in activities of microperoxisomal beta-oxidation significantly lower than in the corresponding unhydrogenated oils. No significant difference could be detected between diets containing hydrogenated or unhydrogenated marine oil. 6. Addition of 5% soybean oil to the essential fatty acid-deficient, partially hydrogenated marine oil diet did not change the effect on the microperoxisomal beta-oxidation activity. 7. Clofibrate feeding increased the heart microperoxisomal beta-oxidation capacity 2.5-fold, as compared to a standard pelleted diet. 8. These findings are discussed in relation to the transient nature of the cardiac lipidosis observed with animals fed on diets rich in C22:1 fatty acids. It is concluded that the heart plays an important part in the adaptation process.  相似文献   

3.
4.
A diet with 20% (w/w) fish oil or partially hydrogenated fish oil has been shown to stimulate omega-oxidation of lauric acid 2.5-fold with rat liver microsomal preparations after 1 week of feeding. A diet containing either 20% (w/w) soybean oil, partially hydrogenated soybean oil or rapeseed oil had no effect. The omega-oxidation was also stimulated by fasting (3.7-fold) and by clofibrate (13-fold). The stimulation of omega-oxidation with partially hydrogenated fish oil was at its highest level after 3 days of feeding, and was dose dependent in the dietary oil of range 5-25% (w/w). With various high-fat diets, a high correlation was found (r = 0.81) between peroxisomal beta-oxidation of palmitoyl-CoA and microsomal omega-oxidation of lauric acid.  相似文献   

5.
The enzyme targets for chlorpromazine inhibition of rat liver peroxisomal and mitochondrial oxidations of fatty acids were studied. Effects of chlorpromazine on total fatty acyl-CoA synthetase activity, on both the first and the third steps of peroxisomal beta-oxidation, on the entry of fatty acyl-CoA esters into the peroxisome and on catalase activity, which allows breakdown of the H2O2 generated during the acyl-CoA oxidase step, were analysed. On all these metabolic processes, chlorpromazine was found to have no inhibitory action. Conversely, peroxisomal carnitine octanoyltransferase activity was depressed by 0.2-1 mM-chlorpromazine, which also inhibits mitochondrial carnitine palmitoyltransferase activity in all conditions in which these enzyme reactions are assayed. Different patterns of inhibition by the drug were, however, demonstrated for both these enzyme activities. Inhibitory effects of chlorpromazine on mitochondrial cytochrome c oxidase activity were also described. Inhibitions of both cytochrome c oxidase and carnitine palmitoyltransferase are proposed to explain the decreased mitochondrial fatty acid oxidation with 0.4-1.0 mM-chlorpromazine reported by Leighton, Persico & Necochea [(1984) Biochem. Biophys. Res. Commun. 120, 505-511], whereas depression by the drug of carnitine octanoyltransferase activity is presented as the factor responsible for the decreased peroxisomal beta-oxidizing activity described by the above workers.  相似文献   

6.
Key enzymes involved in oxidation and esterification of long-chain fatty acids were investigated in male rats fed different types and amounts of oil in their diet. A diet with 20% (w/w) fish oil, partially hydrogenated fish oil (PHFO) and partially hydrogenated soybean oil (PHSO) was shown to stimulate the mitochondrial and microsomal palmitoyl-CoA synthetase activity (EC 6.2.1.3) compared to soybean oil-fed animals after 1 week of feeding. Rapeseed oil had no effect. Partially hydrogenated oils in the diet resulted in significantly higher levels of mitochondrial glycerophosphate acyltransferase compared to unhydrogenated oils in the diet. Rats fed 20% (w/w) rapeseed oil had a decreased activity of this mitochondrial enzyme, whereas the microsomal glycerophosphate acyltransferase activity was stimulated to a comparable extent with 20% (w/w) rapeseed oil, fish oil or PHFO in the diet. Increasing the amount of PHFO (from 5 to 25% (w/w)) in the diet for 3 days led to increased mitochondrial and microsomal palmitoyl-CoA synthetase and microsomal glycerophosphate acyltransferase activities with 5% of this oil in the diet. The mitochondrial glycerophosphate acyltransferase was only marginally affected by increasing the oil dose. Administration of 20% (w/w) PHFO increased rapidly the mitochondrial and microsomal palmitoyl-CoA synthetase, carnitine palmitoyltransferase and microsomal glycerophosphate acyltransferase activities almost to their maximum value within 36 h. In contrast, the glycerophosphate acyltransferase and palmitoyl-CoA hydrolase (EC 3.1.2.2) activities of the mitochondrial fraction and the peroxisomal beta-oxidation reached their maximum activities after administration of the dietary oil for 6.5 days. This sequence of enzyme changes (a) is in accordance with the proposal that an increased cellular level of long-chain acyl-CoA species act as metabolic messages for induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase, i.e., these enzymes are regulated by a substrate-induced mechanism, and (b) indicates that, with PHFO, a greater part of the activated fatty acids are directed from triacylglycerol esterification and hydrolysis towards oxidation in the mitochondria. It is also conceivable that the mitochondrial beta-oxidation is proceeding before the enhancement of peroxisomal beta-oxidation.  相似文献   

7.
Rat hepatoma cells grown intraperitoneally as an ascites tumour were analysed with respect to their contents of cytosolic glutathione transferases. In contrast with normal liver tissue, the hepatoma cells were dominated by the class Pi glutathione transferase 7-7. All the major hepatic enzyme forms were down-regulated to almost undetectable concentrations. Livers of rats bearing ascites-hepatoma cells expressed low, but significant, amounts of protein which, by electrophoretic and immunochemical properties, appeared identical with transferase 7-7. This enzyme is not detectable in normal hepatocytes. Treatment of rats with trans-stilbene oxide induced the expression of transferase 7-7 in the livers of normal rats as well as in hepatoma-cell-bearing animals. In addition, a 2-fold induction of transferase 7-7 was measured in the hepatoma ascites cells. No significant elevation of any other enzyme forms in the hepatoma cells was noted.  相似文献   

8.
In a study of the endocrine control of peroxisomes, the effects of acute glucagon treatment and fasting on hepatic peroxisomal beta-oxidation in rats have been investigated. The activity of the rate-limiting peroxisomal beta-oxidation enzyme, fatty acyl-CoA oxidase, was measured to determine whether activation of peroxisomal beta-oxidation could account for the increase in total hepatic fatty acid oxidation following acute glucagon exposure. Catalase, a peroxisomal enzyme not directly involved in beta-oxidation, was also measured as a control for total peroxisomal activity. No changes with acute glucagon treatment of intact animals were observed with either activity as measured in liver homogenates or partially purified peroxisomal fractions. These observations indicate the lack of acute control by glucagon of peroxisomal function at the level of total enzyme activity. Previous work on the effects of fasting on hepatic fatty acid beta-oxidation [H. Ishii, S. Horie, and T. Suga (1980) J. Biochem. 87, 1855-1858] suggested an enhanced role for the peroxisomal beta-oxidation pathway during starvation. It was found that the peroxisomal beta-oxidation system, as measured by fatty acyl-CoA oxidase activity, does increase with duration of fast when expressed on a per gram wet weight liver basis. However, when this activity is expressed as total liver capacity, a decline in activity with increasing duration of fast is observed. Furthermore, this decline in peroxisomal capacity parallels the decline in total liver capacity for citrate synthase, a mitochondrial matrix enzyme, and total liver protein. These data indicate that peroxisomal beta-oxidation activity is neither stimulated nor even preferentially spared from proteolysis during fasting.  相似文献   

9.
The effect of a 0.25% clofibrate diet for 2 weeks on peroxisomal and mitochondrial beta-oxidation in chicken liver was studied. The activities of antimycin antimycin A-insensitive palmitoyl-CoA oxidation (peroxisomal beta-oxidation) and carnitine acetyltransferase increased about two-fold. The activities of palmitoyl-CoA-dependent O2 consumption (mitochondrial beta-oxidation) and carnitine palmitoyltransferase were also slightly activated by the administration of clofibrate, but not significant. Thus, clofibrate may be a typical drug which activates the peroxisomal beta-oxidation more than the mitochondrial one in various species. The effect of clofibrate on peroxisomal carnitine acetyltransferase was the same as that on the mitochondrial one in chicken liver. Serum lipids were not lowered, but hepatomegaly was observed in the present experiment with chicken.  相似文献   

10.
Physiological role of peroxisomal beta-oxidation in liver of fasted rats   总被引:6,自引:0,他引:6  
In the livers of fasted rats, the activity of peroxisomal palmitocyl-CoA oxidation (NADH production) was increased more rapidly and markedly than that of mitochondrial carnitine palmitoyltransferase, which is the rate limiting enzyme of mitochondrial beta-oxidation. The peroxisomal oxidizing activity was about twice that of the control throughout the period of fasting (1-7 days). carnitine acetyltransferase activity was increased to a similar extent in both peroxisomes and mitochondria. A possible physiological role of liver peroxisomes may thus be as an effective supply of NADH2, acetyl residues and short and medium-length fatty acyl-CoA in the cells on the enhancement of peroxisomal beta-oxidation of the animals under starvation; these substances thus produced may be transported into the mitochondria as energy sources.  相似文献   

11.
Administration of clofibric acid, 2,2'-(decamethylenedithio)diethanol, di(2-ethylhexyl)phthalate or perfluorooctanoic acid to male rates increased markedly microsomal 1-acylglycerophosphocholine (a-acyl-GPC) acyltransferase in a dose-dependent manner in liver. Simultaneous administration of actinomycin D or cycloheximide completely abolished the increase in the enzyme activity. The treatment of rats with clofibric acid did not affect the rate of decay of 1-acyl-GPC acyltransferase. Regardless of a great difference in the chemical structures of the peroxisome proliferators, high correlation was observed between the induced activities of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation. Stearoyl-CoA desaturase was induced by peroxisome proliferators in a dose-dependent manner; nevertheless, high correlation was not seen between the induced activities of desaturase and peroxisomal beta-oxidation. Hormonal (adrenalectomy, diabetes, hyperthyroidism and hypothyroidism) and nutritional (starvation, starvation-refeeding, fat-free diet feeding and high-fat diet feeding) alterations hardly affected the activity of 1-acyl-GPC acyltransferase. The present results indicate that microsomal 1-acyl-GPC acyltransferase is a useful parameter responsive to the challenges by peroxisome proliferators and suggest that a similar regulatory mechanism operates for the inductions of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation.  相似文献   

12.
The stimulatory effect of fructose on ethanol oxidation was studied in livers from fasted rats perfused with Krebs-Henseleit-bicarbonate buffer in a non-recirculating system. Two series of experiments were performed: (A) ethanol was infused with stepwise increasing concentrations (0.1-20 mM) in the presence of 4 mM fructose; (B) fructose was infused with stepwise increasing concentrations (0.5-10 mM) in the presence of 2 mM ethanol. From measured metabolic rates the following parameters were calculated: energy-rich phosphates consumed for fructose metabolism which were provided from oxidative phosphorylation (delta approximately P); reducing equivalents derived from stimulated ethanol utilization which were disposed by mitochondrial oxidation (delta2H). Under the various conditions studied a linear relationship between these parameters was observed. The ratio delta approximately P/delta2H was about 2.0. It is suggested that fructose stimulates ethanol oxidation indirectly by increasing the energy consumption of the liver due to the production of glucose from fructose. Consequetnly, the rate of oxidative phosphorylation is increased and, therefore, the capacity of the respiratory chain for oxidizing reducing equivalents derived from ethanol is enhanced. The data support the more general hypothesis that the rate of ethanol oxidation depend upon the rate of hepatic energy consumption in a given metabolic state.  相似文献   

13.
The activities of peroxisomal and mitochondrial beta-oxidation and carnitine acyltransferases changed during the process of development from embryo to adult chicken, and the highest activities of peroxisomal beta-oxidation, palmitoyl-CoA oxidase, and carnitine acetyltransferase were found at the hatching stage of the embryo. The profiles of these alterations were in agreement with those of the contents of triglycerides and free fatty acids in the liver. The highest activities of mitochondrial beta-oxidation and palmitoyl-CoA dehydrogenase were observed at the earlier stages of the embryo; then the activities decreased gradually from embryo to adult chicken. The ratio of activities of carnitine acetyltransferase in peroxisomes and mitochondria (peroxisomes/mitochondria) increased from 0.54 to 0.82 during the development from embryo to adult chicken. The ratio of activities of carnitine palmitoyltransferase decreased from 0.82 to 0.25 during the development. The affinity of fatty acyl-CoA dehydrogenase toward the medium-chain acyl-CoAs (C6 and C8) was high in the embryo and decreased with development, whereas the substrate specificity of fatty acyl-CoA oxidase did not change. The substrate specificity of mitochondrial carnitine acyltransferases did not change with development. The affinity of peroxisomal carnitine acyltransferases toward the long-chain acyl-CoAs (C10 to C16) was high in the embryo, but low in adult chicken.  相似文献   

14.
A partial inhibition of acylcarnitine oxidation by arsenite in rat liver mitochondria has been studied. This inhibition is confined to the thiolase(s). The inhibition was observed also in the presence of malate, indicating no selective effect on ketogenesis. Ketogenesis from acetyl-CoA was inhibited by arsenite. Mitochondrial CoA was acylated by acylcarnitine nearly as rapidly in the presence of arsenite as in its absence. Thus, arsenite did not interfere with the availibility of CoA in the mitochondria. No effect of arsenite on enzymes of beta-oxidation other than the thiolase(s) was observed. When arsenite and acylcarnitine were added simultaneously to mitochondria, there was a delay before maximal inhibition of oxygen uptake occurred. When the mitochondria were preincubated with arsenite before addition of acylcarnitine, the inhibitory effect on oxygen utilization was initially large, but then partially repealed. Similar time delays were observed in the activity of acetoacetyl-CoA thiolase of disrupted mitochondria depending on the sequence of arsenite and acetoacetyl-CoA addition. It is suggested that substrate and arsenite complete for the reactive sulfhydryl group at the active site of the thiolase(s).  相似文献   

15.
beta-Oxidation of unsaturated fatty acids was studied with isolated solubilized or nonsolubilized peroxisomes or with perfused liver isolated from rats treated with clofibrate. gamma-Linolenic acid gave the higher rate of beta-oxidation, while arachidonic acid gave the slower rate of beta-oxidation. Other polyunsaturated fatty acids (including docosahexaenoic acid) were oxidized at rates which were similar to, or higher than, that observed with oleic acid. Experiments with 1-14C-labeled polyunsaturated fatty acids demonstrated that these are chain-shortened when incubated with nonsolubilized peroxisomes. Spectrophotometric investigation of solubilized peroxisomal incubations showed that 2,4-dienoyl-CoA esters accumulated during peroxisomal beta-oxidation of fatty acids possessing double bond(s) at even-numbered carbon atoms. beta-Oxidation of [1-14C]docosahexaenoic acid by isolated peroxisomes was markedly stimulated by added NADPH or isocitrate. This fatty acid also failed to cause acyl-CoA-dependent NADH generation with conditions of assay which facilitate this using other acyl-CoA esters. These findings suggest that 2,4-dienoyl-CoA reductase participation is essential during peroxisomal beta-oxidation if chain shortening is to proceed beyond a delta 4 double bond. Evidence obtained using arachidionoyl-CoA, [1-14C]arachidonic acid, and [5,6,8,9,11,12,14,15-3H]arachidonic acid suggests that peroxisomal beta-oxidation also can proceed beyond a double bond positioned at an odd-numbered carbon atom. Experiments with isolated perfused livers showed that polyunsaturated fatty acids also in the intact liver are substrates for peroxisomal beta-oxidation, as judged by increased levels of the catalase-H2O2 complex on infusion of polyunsaturated fatty acids.  相似文献   

16.
17.
To investigate the mechanism for initiation of peroxisomal beta-oxidation by high-fat diets the time-courses of peroxisomal beta-oxidation and microsomal omega-oxidation stimulated by 20% (w/w) partially hydrogenated fish oil were studied. The relative stimulation of these two activities developed in a very similar way. We also observed an elevated level of long-chain acyl-CoA with partially hydrogenated fish oil, but not of free fatty acids. There was, however, a significant shift in the composition of free fatty acids to a higher amount of monoenes and lower amounts of 18:2 and 20:4 fatty acids. In peroxisomes purified by Nycodenz gradient centrifugation there was no lauric acid hydroxylation. This study indicates that with partially hydrogenated fish oil we obtain a parallel stimulation of reactions in two different cellular compartments. Dicarboxylic fatty acids, which are products of the omega-oxidation, had only a slight stimulatory effect on peroxisomal beta-oxidation. Therefore, the primary stimulatory agent of peroxisomal beta-oxidation and microsomal omega-oxidation is still unknown. It was speculated that this agent may activate a gene-locus responsible for both reactions.  相似文献   

18.
The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.  相似文献   

19.
We investigated the immunoreactivity of the peroxisomal lipid beta-oxidation enzymes acyl-CoA oxidase, trifunctional protein, and thiolase in guinea pig liver and compared it with that of homologous proteins in rat, using immunoblotting of highly purified peroxisomal fractions and monospecific antibodies to rat proteins. In addition, the immunocytochemical localization of beta-oxidation enzymes in guinea pig liver was compared with that of catalase. All antibodies showed crossreactivity between the two species, indicating that these peroxisomal proteins have been well conserved, although all exhibited some differences with respect to molecular size and, in the case of acyl-CoA oxidase, in frequency of the immunoreactive bands. In the latter case, a distinct second band in the 70 KD range was observed in guinea pig, in addition to the regular band due to subunit A present in rat liver. This novel band could be due either to trihydroxycoprostanoyl-CoA oxidase or to the non-inducible branched chain fatty acid oxidase described recently. All three beta-oxidation enzymes were immunolocalized by light and electron microscopy to the matrix of peroxisomes, in contrast to catalase, which is also found in the cytoplasm and the nucleus of hepatocytes in guinea pig liver.  相似文献   

20.
M Sato  J Takahara  M Niimi  R Tagawa  S Irino 《Life sciences》1991,48(17):1639-1644
The present study was undertaken to investigate the direct actions of rat galanin (R-GAL) on growth hormone (GH) release from the rat anterior pituitary in vitro. R-GAL modestly but significantly stimulated GH release without an increase in intra- and extracellular cyclic AMP levels in monolayer cultures of rat anterior pituitary cells. This stimulatory effect of R-GAL was dose-dependent but not additive with that of GH-releasing factor (GRF). R-GAL-stimulated GH release was less sensitive to the inhibitory effect of somatostatin than was GRF-stimulated GH release. In perfusions of rat anterior pituitary fragments, R-GAL induced a gradual and sustained increase of GH release. Incremental GH release derived in part from preformed stored GH. These data confirm that R-GAL acts at the pituitary level to stimulate GH release by a mechanism distinct from that of GRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号