首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of vitamin E and selenium as protective agents against oxidative stress was evaluated by measuring liver chemiluminescence in situ. Weanling rats fed a vitamin E- and selenium-deficient diet showed liver chemiluminescence that was increased 60 and 100% over control values at 16 and 18 days respectively after weaning. At day 21, the double deficiency led to hepatic necrosis, as observed by optical and electron microscopy, and increased serum levels of lactate dehydrogenase and alanine aminotransferase. Single deficiencies, in either vitamin E or selenium, did not produce liver necrosis but increased liver chemiluminescence. Vitamin E deficiency led to a 23 and 50% increase in liver emission at days 18 and 20 respectively; selenium deficiency produced a 64% increase at day 16. The activity of liver selenium-glutathione peroxidase diminished to 13% of the control value in the rats fed doubly deficient and selenium-deficient diets. Activities of superoxide dismutase, catalase and non-selenium-glutathione peroxidase were not modified by the different diets. These results suggest that oxy-radical generation may play a major role in hepatic necrosis in vitamin E- and selenium-deficiency.  相似文献   

2.
Vitamin E supplementation exhibits anti-inflammatory properties. In the lung, the beneficial effects of vitamin E supplementation on inflammation and infections are well documented, but potential consequences of alimentary vitamin E deficiency to the immunological status of lung cells are not known. It is unclear if temporary vitamin E deficiency exhibits deleterious consequences or can be compensated for by other cellular antioxidants. To address this question, the alimentary vitamin E supply to rats was modified. We then investigated the effects on major histocompatibility molecule (MHC) class II, cell adhesion molecules, interleukin (IL)10, tumor necrosis factor (TNF)alpha in various lung cells. The constitutive expression of MHC class II, intercellular adhesion molecule (ICAM)-1, L-selectin, alpha5-integrin, and CD 166, was demonstrated by flow cytometry on type II pneumocytes, alveolar macrophages, and on co-isolated lymphocytes. Vitamin E depletion increased ICAM-1 and CD166 on type II cells and macrophages, whereas the expression of L-selectin increased only on macrophages. Furthermore, the vitamin E depletion increased the cellular content and secretion of IL10 in type II cells, but decreased the content and secretion of TNFalpha. Vitamin E depletion decreased the cellular vitamin E content, but did not change the activity of antioxidant enzymes (catalase, superoxide dismutase) and the glutathion (GSH)/oxidized glutathion (GSSG) ratio in alveolar type II cells. The shift of protein kinase C (PKC) from the cytosol to membranes indicates that a PKC-dependent signaling pathway may be involved in the change of the immunological status of type II cells. All these effects were reversed by vitamin E repletion. In summary, these results are clearly compatible with the view that a temporary vitamin E deficiency induces a reversible immunological dysregulation in alveolar type II cells and lung macrophages. This deficiency might predispose the lung to develop acute or chronic inflammation.  相似文献   

3.
Multiple epidemiological studies link vitamin D deficiency to increased cardiovascular disease (CVD), but causality and possible mechanisms underlying these associations are not established. To clarify the role of vitamin D-deficiency in CVD in vivo, we generated mouse models of diet-induced vitamin D deficiency in two backgrounds (LDL receptor- and ApoE-null mice) that resemble humans with diet-induced hypertension and atherosclerosis. Mice were fed vitamin D-deficient or -sufficient chow for 6 weeks and then switched to high fat (HF) vitamin D-deficient or –sufficient diet for 8–10 weeks. Mice with diet-induced vitamin D deficiency showed increased systolic and diastolic blood pressure, high plasma renin, and decreased urinary sodium excretion. Hypertension was reversed and renin was suppressed by returning chow-fed vitamin D-deficient mice to vitamin D-sufficient chow diet for 6 weeks. On a HF diet, vitamin D-deficient mice had ∼2-fold greater atherosclerosis in the aortic arch and ∼2–8-fold greater atherosclerosis in the thoracic and abdominal aorta compared to vitamin D-sufficient mice. In the aortic root, HF-fed vitamin D-deficient mice had increased macrophage infiltration with increased fat accumulation and endoplasmic reticulum (ER) stress activation, but a lower prevalence of the M1 macrophage phenotype within atherosclerotic plaques. Similarly, peritoneal macrophages from vitamin D-deficient mice displayed an M2-predominant phenotype with increased foam cell formation and ER stress. Treatment of vitamin D-deficient mice with the ER stress reliever PBA during HF feeding suppressed atherosclerosis, decreased peritoneal macrophage foam cell formation, and downregulated ER stress proteins without changing blood pressure. Thus, we suggest that vitamin D deficiency activates both the renin angiotensin system and macrophage ER stress to contribute to the development of hypertension and accelerated atherosclerosis, highlighting vitamin D replacement as a potential therapy to reduce blood pressure and atherosclerosis.  相似文献   

4.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is known to interact in vitro with mononuclear phagocytes. The purpose of this study was to determine the role of the steroid in macrophage activation in vivo. Peritoneal macrophages from normal and vitamin D3-deficient mice were obtained after i.p. injection of activating or eliciting agents. Cells obtained from vitamin D3-deficient mice exhibited defected capabilities to perform anti-tumor activities (cytostasis and cytolysis) and to form oxygen reduction products (H2O2 and O2-). On the other hand, the level of the lysosomal enzyme acid phosphatase was unaffected by vitamin D3 deficiency. In vitro, incubation of macrophages with 1,25(OH)2D3 enhanced their anti-tumor activities, but did not affect the cells' capacity to produce H2O2 and O2-, or acid phosphatase. Our results suggest that 1,25(OH)2D3 is essential for macrophage activation in vivo. However, in vitro, the hormone is only partially capable of affecting the macrophage functions, probably because of the maturation state of the cells.  相似文献   

5.
We previouslyshowed that increased macrophage andPGE2 production with age is due toenhanced cyclooxygenase (COX) activity and COX-2 expression. This studydetermined the effect of vitamin E supplementation on macrophagePGE2 synthesis in young and old mice and its underlying mechanism. Mice were fed 30 or 500 parts permillion vitamin E for 30 days. Lipopolysaccharide (LPS)-stimulated macrophages from old mice produced significantly morePGE2 than those from young mice.Vitamin E supplementation reversed the increasedPGE2 production in old mice buthad no effect on macrophage PGE2production in young mice. In both LPS-stimulated and unstimulated macrophages, COX activity was significantly higher in old than in youngmice at all intervals. Vitamin E supplementation completely reversedthe increased COX activity in old mice to levels comparable to those ofyoung mice but had no effect on macrophage COX activity of young miceor on COX-1 and COX-2 protein or COX-2 mRNA expression in young or oldmice. Thus vitamin E reverses the age-associated increase in macrophagePGE2 production and COX activity.Vitamin E exerts its effect posttranslationally, by inhibiting COXactivity.

  相似文献   

6.
Vitamin E inhibits cyclooxygenase activity in macrophages from old mice by reducing peroxynitrite production. PGE(2) is a proinflammatory mediator that has been linked to a variety of age-associated diseases such as cancer, arthritis, and cardiovascular disease. Furthermore in the aged, increased cyclooxygenase (COX)-2-mediated PGE(2) production contributes to decline in T-cell-mediated function. Previously we reported that increased macrophage PGE(2) production in the aged is due to higher COX-2 activity and that supplementation with vitamin E significantly reduced the age-associated increase in macrophage PGE(2) production posttranslationally without changing COX-2 expression. Peroxynitrite, a product of nitric oxide (NO) and superoxide (O(-)(2)), increases the activity of COX without affecting its expression. Thus, we investigated if vitamin E inhibits COX activity through decreasing peroxynitrite formation. Macrophages from old mice had higher PGE(2) levels, COX activity, and NO levels than those from young mice, all of which were significantly reduced by vitamin E. When added individually, inhibitors of NO and O(-)(2) did not significantly reduce COX activity; however, when the inhibitors were combined, COX activity was significantly reduced in macrophages from old mice fed 30 ppm vitamin E. Increasing NO levels alone using SNAP or O(-)(2) levels, using X/XO, had no effect; however, increasing peroxynitrite levels using Sin-1 or X/XO + SNAP significantly increased COX activity in macrophages from old mice fed 500, but not those fed 30 ppm vitamin E. These data strongly suggest that peroxynitrite plays an important role in the vitamin E-induced inhibition of COX activity. These findings have important implications for designing interventions to reverse and/or delay age-associated dysregulation of immune and inflammatory responses and diseases associated with them.  相似文献   

7.
Effects of vitamin E and/or selenium (Se) deficiency on the secretion of arachidonic acid metabolites by zymosan-stimulated pulmonary alveolar macrophages (AM) were examined using cells from male Long-Evans hooded rats fed torula-yeast based diets with or without the supplementation of vitamin E (150 IU/kg) or Se (0.5 mg/kg). Alveolar macrophages obtained by lavage were purified by adherence and cultured for 4 h in Hank's balanced salt solution containing bovine serum albumin (0.1%) and zymosan (300 micrograms/ml). The arachidonic acid metabolites present in the culture supernatant were measured by radioimmunoassay. Altered vitamin E and Se nutrition had no effect on the number of cells or cell types recovered from the pulmonary airways. Alveolar macrophages derived from animals fed on diets deficient in vitamin E or Se or both nutrients secreted higher levels of prostaglandin E2 and thromboxane B2. Levels of both 5-hydroxyeicosatetraenoic acid and leukotriene B4 were significantly increased only in the group fed the diet adequate in Se but deficient in vitamin E. Our data suggest that vitamin E and Se might play an important role to control the levels of several physiologically and pathologically important arachidonic acid metabolites.  相似文献   

8.
Aim of this study was to confirm an increased free radical generation rate during ischemia-reoxygenation, by ultra-weak chemiluminescence detection at the surface of perfused rat heart. We observed that reoxygenation following 30 min global ischemia, induces an increase of ultraweak chemiluminescence emission in isolated perfused heart only if partial depletion of vitamin E is induced by dietary manipulation. Moreover, in normal diet fed rats, vitamin E is partially consumed during global ischemia, but not during reoxygenation. Since chemiluminescence increases during post-ischemic reperfusion, when vitamin E myocardial content is lowered, the most probable free radicals involved are the hydroperoxyl radical derivatives of lipids. These radicals, indeed, are known both to produce photoemission by disproportion and to react with vitamin E. On the other hand, the nature of the reaction that consumes vitamin E during ischemia is still obscure. Accordingly, the basal level of vitamin E myocardial content seems to be a key factor for protecting the heart against reoxygenation injury and its consumption during ischemia could be a determinant of myocardial sensitivity to oxidative stress during reperfusion.  相似文献   

9.
The significance of microsomal vitamin E in protecting against the free-radical process of lipid peroxidation was evaluated with the low-level-chemiluminescence technique in microsomal fractions from vitamin E-deficient and control rats. The induction period that normally precedes the ascorbate/ADP/Fe3+-induced lipid peroxidation was taken as reflecting the microsomal vitamin E content and was found to be 5-6-fold decreased in microsomal fractions from vitamin E-deficient rats. Supplementation of microsomal fractions from vitamin E-deficient rats with exogenous vitamin E partially restores the induction period observed in that from control rats. The decrease in chemiluminescence intensity and the increase in the induction period both correlate linearly with the amount of vitamin E added. However, the efficiency of exogenous vitamin E is about 50-fold lower than that exerted by the naturally occurring vitamin E in microsomal membranes. These observations are discussed in terms of the process of re-incorporation of vitamin E into membranes, the experimental model for lipid peroxidation selected, and the method to evaluate lipid peroxidation, namely low-level chemiluminescence.  相似文献   

10.
The variation in tocopherol content of resident peritoneal rat macrophages was investigated during an oxidative stress provided by superoxide anions. Fluorometric measurements showed that phagocytic cells contain 298 +/- 18 ng vit.E/mg prot. The vitamin E level remains nearly constant during 1 h of incubation: 266 +/- 46 ng vit.E/mg prot. HPLC control at 37 degrees C validates our fluorometric measurement. Superoxide anions (O2-.) synthesis was activated by phorbol myristate acetate (PMA) (0.5 microgram/ml), after 1 h of incubation a decrease of 40% of the macrophage tocopherol level was observed and assessed by HLPC control. No tocopherolquinone (TQ) was detected. To clarify this point, tocopherol oxidation was followed spectrophotometrically. Results did not show any appearance of TQ at 265 nm but appearance of a peak at 307 mm. This our results show for the first time that macrophages possess vitamin E which plays a partial role in the protection of their plasma membrane. The lack of detection of TQ is of interest and the study of this unidentified product of oxidation should help us to understand the exact metabolism of vitamin E.  相似文献   

11.
Previously, we reported that some kinds of lipids (cholesterol esters, triglycerides, and some negatively charged phospholipids) that are constituents of lipoproteins or cell membranes induce growth of peripheral macrophages in vitro. In this paper, we examined the effect of peroxidation of lipids on their macrophage growth-stimulating activity because lipid peroxidation is observed in many pathological states such as inflammation. When phosphatidylserine, one of the phospholipids with growth-stimulating activity, was peroxidized by UV irradiation, its macrophage growth-stimulating activity was augmented in proportion to the extent of its peroxidation. The activity of phosphatidylethanolamine was also increased by UV irradiation. On the other hand, phosphatidylcholine or highly unsaturated free fatty acids, such as arachidonic acid and eicosapentaenoic acid, did not induce macrophage growth irrespective of whether they were peroxidized. The augmented activity of UV-irradiated phosphatidylserine was not affected by the coexistence of an antioxidant, vitamin E or BHT. These results suggest that some phospholipids included in damaged cells or denatured lipoproteins which are scavenged by macrophages in vivo may induce growth of peripheral macrophages more effectively when they are peroxidized by local pathological processes.  相似文献   

12.
Effects of vitamin E and/or selenium (Se) deficiency on the secretion of arachidonic acid metabolites by zymosan-stimulated pulmonary alveolar macrophages (AM) were examined using cells from male Long-Evans hooded rats fed torula-yeast based diets with or without the supplementation of vitamin E (150 IU/kg) or Se (0.5 mg/kg). Alveolar macrophages obtained by lavage were purified by adherence and cultured for 4 h in Hankś balanced salt solution containing bovine serum albumin (0.1%) and zymosan (300 μg/ml). The arachidonic acid metabolites present in the culture supernatant were measured by radioimmunoassay. Altered vitamin E and Se nutrition had no effect on the number of cells or cell types recovered from the pulmonary airways. Alveolar macrophages derived from animals fed on diets deficient in vitamin E or Se or both nutrients secreted higher levels of prostaglandins E2 and thromboxane B2. Levels of both 5-hydroxyeicosatetraenoic acid and leukotriene B4 were significantly increased only in the group fed the diet adequate in Se but deficient in vitamin E. Our data suggest that vitamin E and Se might play an important role to control the levels of several physiologically and pathologically important arachidonic acid metabolites.  相似文献   

13.
The interaction of RNase A and RNase Bacillus intermedius with peritoneal macrophage of rats has been studied. To estimate the efficiency of this interaction the spontaneous chemiluminescence and induced by phagocytosis chemiluminescence of macrophages were investigated. It has been shown that electrostatic interaction of enzyme proteins with negatively charged cell membrane makes substantional contribution to the development of chemiluminescence reply of macrophages. The RNase A, which is more basical than the other (i. e. it has larger value of pI) is less effective with respect to macrophages. The calculation of total charge and dipole moment of pancreatic and microbial RNases showed that the efficiency of interaction between protein polycation and a cell was not connected with pI and depended on the charge and its distribution on the surface of protein molecule at the given pH value.  相似文献   

14.
Dietary polyunsaturated fatty acid modulation exerts a beneficial effect in immune-mediated glomerulonephritis. To elucidate the mechanisms underlying this phenomenon, the effects of essential fatty acid (EFA) deficiency on the heterologous phase of nephrotoxic nephritis in rats (induced by the injection of a rabbit antiglomerular basement membrane antibody) were studied. The heterologous phase of nephrotoxic nephritis was characterized by an invasion of leukocytes into the glomerulus. Polymorphonuclear neutrophils predominated early on (3 h), whereas macrophages predominated at 24 and 72 h. EFA deficiency selectively prevented the influx of macrophages into the glomerulus. The invasion of polymorphonuclear neutrophils, in contrast, was unaffected. The influx of leukocytes into the glomerulus during nephritis was accompanied by a marked enhancement (10- to 40-fold) in glomerular thromboxane and leukotriene B4 production. EFA deficiency largely attenuated this change. Renal dysfunction during the heterologous phase of nephritis was manifested as azotemia, polyuria, sodium retention, and proteinuria. With EFA deficiency, polyuria, azotemia, and sodium retention were not seen. Proteinuria was reduced by approximately 85%. To address whether the lack of macrophage migration into the glomerulus in the context of nephritis with EFA deficiency might be due to a functional defect in macrophage migration, the chemotactic responsiveness of EFA-deficient macrophages was examined. EFA-deficient macrophages displayed normal chemotactic migration toward activated C. In sum, EFA deficiency prevents the invasion of macrophages into the glomerulus in nephrotoxic nephritis and attenuates the accompanying metabolic and functional alterations, but does not affect macrophage chemotactic responsiveness. Alterations in macrophage elicitation and lipid mediator generation by inflamed glomeruli thus appear to be central to the salutary effect of dietary polyunsaturated fatty acid modification on glomerulonephritis.  相似文献   

15.
The oxidative metabolism (chemiluminescence and H2O2 release) and phagocytic activity of mouse peritoneal macrophages during chronic infections induced by Mycobacterium intracellulare and more acute infections due to Listeria monocytogenes were studied. In M. intracellulare infections, macrophage chemiluminescence in response to phorbol myristate acetate (PMA) was greatest at around 2 weeks, with a 1 week lag phase after infection, while the PMA-triggered H2O2 release was markedly enhanced even 1 d after challenge, and remained high thereafter for up to 10 weeks. The pattern of changes in the phagocytic activity of host macrophages in response to latex beads during this infection resembled the pattern seen with macrophage H2O2 release. In the L. monocytogenes infections, the PMA-triggered chemiluminescence of the host macrophages increased 4 d (in a sublethal infection) and 2 d (in a lethal infection) after bacterial challenge, whereas the PMA-triggered H2O2 release was markedly enhanced as early as 1 d after infection and the elevated level persisted until either the bacteria were eliminated or the animals died. The patterns of changes in phagocytic activity of the host macrophages during L. monocytogenes infection at sublethal and lethal doses differed. In the former, phagocytosis was most active in the early phase of infection, with a peak around day 2, followed by a rapid decrease; in the latter, the phagocytic ability increased more slowly, and remained elevated until the animals died. The results suggest that the macrophages induced by M. intracellulare are in a more activated state than are those induced by L. monocytogenes.  相似文献   

16.
活性氧对巨噬细胞呼吸爆发影响及云芝多糖的保护作用   总被引:2,自引:0,他引:2  
用化学发光法观察到叔丁基氢过氧化物对培养的小鼠腹腔巨噬细胞呼吸爆发有强烈的抑制作用。云芝多糖经腹腔注射后,能增强巨噬细胞呼吸爆发功能对叔丁基氢过氧化物损伤的抵抗力。云芝多糖处理的巨噬细胞谷胱甘肽过氧化物酶基础活力显著提高,在叔丁基氢过氧化物作用下,云芝多糖处理的巨噬细胞仍有较高的谷胱甘肽过氧化物酶活力。说明巨噬细胞的免疫功能与谷胱甘肽过氧化物酶活力有关,非特异性免疫多糖可提高细胞抗氧化能力,减轻活性氧损伤作用。  相似文献   

17.
Møller S  Lauridsen C 《Cytokine》2006,35(1-2):6-12
This study examined the influence of different dietary fat sources (animal fat, sunflower oil, and fish oil) and supplementation of vitamin E (85, 150 and 300 mg all-rac-alpha-tocopheryl acetate/kg diet) on the ex vivo synthesis of eicosanoids and cytokines by porcine alveolar macrophages. Supplementation of vitamin E provoked an increase in the concentration of alpha-tocopherol of the macrophages irrespective of fat sources. Fish oil increased the macrophage n-3 content with 100% and 40%, and reduced the n-6 with 60% and 53% in comparison with sunflower oil and animal fat, respectively. Fish oil decreased the production of TNF-alpha, IL-8, LTB4, and PGE2 (but not IL-6) relative to the other dietary fat sources, and no difference was observed between sunflower oil and animal fat. Positive correlations were found between the n-6 fatty acid content and the production of PGE2, and the PGE2 production was positively correlated with TNF-alpha and IL-8. Negative correlations were found between the n-3 PUFA content and the concentration of PGE2, TNF-alpha and IL-8. In conclusion, dietary fish oil supplemented at a level of 5%, but not supplemental vitamin E, influenced the inflammatory responses of alveolar macrophages isolated from weaned pigs relatively to animal fat and sunflower oil.  相似文献   

18.
The present study was designed to determine whether the supplementation of vitamin E in the copper-deficient diet would ameliorate the severity of copper deficiency in fructose-fed rats. Lipid peroxidation was measured in the livers and hearts of rats fed a copper-deficient diet (0.6 microg Cu/g) containing 62% fructose with adequate vitamin E (0.1 g/kg diet) or supplemented with vitamin E (1.0 g/kg diet). Hepatic lipid peroxidation was significantly reduced by vitamin E supplementation compared with the unsupplemented adequate rats. In contrast, myocardial lipid peroxidation was unaffected by the level of vitamin E. Regardless of vitamin E supplementation, all copper-deficient rats exhibited severe signs of copper deficiency, and some of the vitamin E-supplemented rats died of this deficiency. These findings suggest that although vitamin E provided protection against peroxidation in the liver, it did not protect the animals against the severity of copper deficiency induced by fructose consumption.  相似文献   

19.
The effects of some phenothiazines (promethazine, PMZ; chlorpromazine, CPZ; levomepromazine, LVPZ; thioridazine, TRDZ; trifluoperazine, TFPZ) on the activation and viability of rat peritoneal macrophages were investigated. The macrophage activation was estimated by measuring of luminol-dependent chemiluminescence, induced by phorbol-12-myristate-13-acetate (PMA) (a protein kinase C activator) or calcium ionophore A23187. The viability of macrophages was determined using ATP bioluminescence as a criterion of cell viability. It was observed that all drugs, in concentrations higher than 1 mol/L, markedly decreased the chemiluminescent index of PMA-activated or A23187-activated macrophages. The inhibitory effect was dose-dependent. It was better expressed in the case of CPZ, followed by TFPZ and TRDZ, and less expressed in the case of PMZ and LVPZ. The suppression of chemiluminescence of PMA-/A23187-activated macrophages by phenothiazines was not a result of their cytotoxic effect. Moreover, it was found that all drugs dose-dependently enhanced the viability of macrophages, estimated by ATP production. The inhibitory effects of phenothiazines on the chemiluminescence of PMA-/A23187-activated macrophages were greater than their ability to decrease KO2-induced chemiluminescence as a result of interaction with superoxide radicals. It may be supposed that the inhibitory effect of phenothiazines on PMA-/A23187-induced chemiluminescence of macrophages is a result not only of interaction between drugs and superoxide radicals, generated during the "oxidative burst" of activated cells. Presumably the drugs have an immunomodulating effect on rat peritoneal macrophages.  相似文献   

20.
The mechanism of tissue injury at the cellular level by following the chemiluminescence response of various phagocytes in E. coli induced experimental pyelonephritis in mice was investigated. There was a marked increase in the capacity of various phagocytic cells viz; renal neutrophils and macrophages peritoneal macrophages, blood monocytes and neutrophils to produce reactive oxygens species through the respiratory burst activity as monitored by the chemiluminescence response. The chemiluminescence response was observed to be increased significantly (p less than 0.001) with increasing days post infection in all phagocytic cells. However, the quantity of total reactive oxygen species produced per million cells was much more in the renal and peritoneal macrophages as compared to blood monocytes and neutrophils. The peak chemiluminescence response time was observed to be decreased from 4 to 2 minutes with the progression of the diseases. The implications of these findings have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号