首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular calcium homeostasis is controlled predominantly by the plasma membrane calcium pump (PMCA). From four PMCA isoforms, PMCA1 and PMCA4 are ubiquitous, while PMCA2 and PMCA3 are found in excitable cells. We have previously shown that suppression of neuron-specific PMCAs in non-differentiated PC12 cells changed the cell morphology and triggered neuritogenesis. Using the microarrays, real-time PCR and immunodetection, we analyzed the effect of PMCA2 or PMCA3 reduction in PC12 cells on gene expression, with emphasis on calmodulin (CaM), neuromodulin (GAP43) and MAP kinases. In PMCA-suppressed lines total CaM increased, and the calm I and calm II genes appeared to be responsible for this effect. mRNA and protein levels of GAP43 were increased, however, the amount of phosphorylated form was lower than in control cells. Localization of CaM/GAP43 and CaM/pGAP43 differed between control and PMCA-reduced cells. In both PMCA-modified lines, amounts of ERK1/2 increased. While pERK1 decreased, the pERK2 level was similar in all examined lines. PMCA suppression did not change the p38 amount, but the p-p38 diminished. JNK2 protein decreased in both PMCA-reduced cells without changes in pJNK level. Microarray analysis revealed distinct expression patterns of certain genes involved in the regulation of cell cycle, proliferation, migration, differentiation, apoptosis and cell signaling. Suppression of neuron-specific PMCA isoforms affected the phenotype of PC12 cells enabling adaptation to the sustained increase in cytosolic Ca(2+) concentration. This is the first report showing function of PMCA2 and PMCA3 isoforms in the regulation of signaling pathways in PC12 cells.  相似文献   

2.
3.
The four basic isoforms of the plasma membrane Ca2+ pump and the two C-terminally truncated spliced variants PMCA4CII(4a) and 3CII(3a) were transiently overexpressed in Chinese hamster ovary cells together with aequorin targeted to the cytosol, the endoplasmic reticulum, and the mitochondria. As PMCA3CII(3a) had not yet been cloned and studied, it was cloned for this study, partially purified, and characterized. At variance with the corresponding truncated variant of PMCA4, which had been studied previously, PMCA3CII(3a) had very high calmodulin affinity. All four basic pump variants influenced the homeostasis of Ca2+ in the native intracellular environment. The level of [Ca2+] in the endoplasmic reticulum and the height of the [Ca2+] transients generated in the cytosol and in the mitochondria by the emptying of the endoplasmic reticulum store by inositol 1,4,5-trisphosphate were all reduced by the overexpression of the pumps. The effects were much greater with the neuron-specific PMCA2 and PMCA3 than with the ubiquitously expressed isoforms 1 and 4. Unexpectedly, the truncated PMCA3 and PMCA4 were as effective as the full-length variants in influencing the homeostasis of Ca2+ in the cytosol and the organelles. In particular, PMCA4CII(4a) was as effective as PMCA4CI(4b), even if its affinity for calmodulin is much lower. The results indicate that the availability of calmodulin may not be critical for the modulation of PMCA pumps in vivo.  相似文献   

4.
Plasma membrane calcium ATPases (PMCAs) actively extrude Ca(2+) from the cell and are essential components in maintaining intracellular Ca(2+) homeostasis. There are four PMCA isoforms (PMCA1-4), and alternative splicing of the PMCA genes creates a suite of calcium efflux pumps. The role of these different PMCA isoforms in the control of calcium-regulated cell death pathways and the significance of the expression of multiple isoforms of PMCA in the same cell type are not well understood. In these studies, we assessed the impact of PMCA1 and PMCA4 silencing on cytoplasmic free Ca(2+) signals and cell viability in MDA-MB-231 breast cancer cells. The PMCA1 isoform was the predominant regulator of global Ca(2+) signals in MDA-MB-231 cells. PMCA4 played only a minor role in the regulation of bulk cytosolic Ca(2+), which was more evident at higher Ca(2+) loads. Although PMCA1 or PMCA4 knockdown alone had no effect on MDA-MB-231 cell viability, silencing of these isoforms had distinct consequences on caspase-independent (ionomycin) and -dependent (ABT-263) cell death. PMCA1 knockdown augmented necrosis mediated by the Ca(2+) ionophore ionomycin, whereas apoptosis mediated by the Bcl-2 inhibitor ABT-263 was enhanced by PMCA4 silencing. PMCA4 silencing was also associated with an inhibition of NFκB nuclear translocation, and an NFκB inhibitor phenocopied the effects of PMCA4 silencing in promoting ABT-263-induced cell death. This study demonstrates distinct roles for PMCA1 and PMCA4 in the regulation of calcium signaling and cell death pathways despite the widespread distribution of these two isoforms. The targeting of some PMCA isoforms may enhance the effectiveness of therapies that act through the promotion of cell death pathways in cancer cells.  相似文献   

5.
The plasma membrane is a specialised multi-component structure with inter- and intracellular signalling functions. Ca2+ plays a crucial role in cellular physiology, and an ATP-driven plasma membrane calcium pump (PMCA) plays the greatest role in the maintenance of a low free Ca2+ concentration in the cytoplasm. The enzyme is coded by four separate genes (PMCA 1-4), and, due to alternative splicing, more than 20 variants can exist. PMCA 1 and 4 isoforms are present in almost all tissues, whereas PMCA 2 and 3 are found in more specialised cell types. The variants differ primarily in their regulatory regions, thus the modulation of calcium pump activity strongly depends on the isoform and the membrane composition. The unique function of PMCA isoforms was confirmed using the practical experimental models - a rat pheochromocytoma cell line, a human neuroblastoma cell line, or, more recently, knockout mice. In addition, based on the finding that PMCA could interact with several specific signaling proteins, it was concluded that its location in defined sites of the cell membrane could be a prerequisite for efficient intercellular communication.  相似文献   

6.
7.
The N-terminal segment of the plasma membrane Ca2+ pump (PMCA) is one of the most variable regions among the four isoforms of the enzyme and its functional importance is unknown. In the present work, the N-terminal segment of the highly active C-terminally truncated h4 mutant, h4(ct120) was modified either by substituting residues 18-43 by residues 43-75 or by replacing residues 1-75 by the homologous region from isoform h1 (residues 1-79). Immunoblot analysis of microsomal membranes from transfected COS-1 cells showed that the two N-terminally mutated proteins were correctly expressed at a level similar to that of h4(ct120). Measurements of the Ca2+ uptake by microsomal vesicles from transfected COS-1 cells indicated that mutant (18-43-->43-75)h4(ct120) had only negligible Ca2+ transport activity while the chimeric (n1-79)h1h4(ct120) enzyme was fully capable of functioning as a calcium pump.Like h4(ct120), the chimeric mutant was not stimulated further by calmodulin, and was inhibited to a similar degree by the C28R2 peptide corresponding to the calmodulin binding autoinhibitory region of the pump. Moreover, the apparent affinity for Ca2+ and the ATP dependence of the chimeric enzyme were similar to those of the h4(ct120) pump suggesting that the variability of sequence between the N-terminal segment of PMCA isoforms h1 and h4 involves amino acid substitutions that do not substantially change the behavior of the h4 enzyme. Altogether, these results demonstrate that for activity the h4 Ca pump requires a specific amino acid sequence at its N-terminus, and the essential elements for a fully active enzyme can be provided by the N-terminal segment of isoform h1 despite the variability.  相似文献   

8.
Although placental transfer of maternal calcium (Ca(2+)) is a crucial process for fetal development, the biochemical mechanisms are not completely elucidated. Especially, mechanisms of syncytiotrophoblast Ca(2+) extrusion into fetal circulation remain to be established. In the current study we have investigated the characteristics of Ca(2+) efflux in syncytiotrophoblast-like structure originating from the differentiation of cultured trophoblasts isolated from human term placenta. Time-courses of Ca(2+) uptake by differentiated human trophoblasts displayed rapid initial entry (initial velocity (V(i)) of 8.82 +/- 0.86 nmol/mg protein/min) and subsequent establishment of a plateau. Ca(2+) efflux studies with (45)Ca(2+)-loaded cells also showed rapid decline of cell-associated (45)Ca(2+) with a V(i) of efflux (V(ie)) of 8.90 +/- 0.96 nmol/mg protein/min. Expression of membrane systems responsible for intracellular Ca(2+) extrusion from differentiated human trophoblast were investigated by RT-PCR. Messenger RNAs of four known isoforms of PMCA (PMCA 1-4) were detected. Messenger RNAs of two cloned human NCX isoforms (NCX1 and NCX3) were also revealed. More specifically, both splice variants NCX1.3 and NCX1.4 were amplified by PCR with total RNA of differentiated human trophoblast cells. Ca(2+) flux studies in Na-free incubation medium indicated that NCX played a minimal role in the cell Ca(2+) fluxes. However, erythrosine B (inhibitor of PMCA) time- and dose-dependently increased cell associated (45)Ca(2+) suggesting a principal role of plasma membrane Ca(2+)-ATPase (PMCA) in the intracellular Ca(2+) extrusion of syncytiotrophoblast-like structure originating from the differentiation of cultured trophoblast cells isolated from human term placenta.  相似文献   

9.
10.
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.  相似文献   

11.
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca(2+) pump(s) (PMCA) isoform 1. PMCA extrude Ca(2+) from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1-4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca(2+)-Mg(2+)-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant=17±2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant=45±4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca(2+) concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.  相似文献   

12.
The plasma membrane Ca2+ ATPase isoform 1(PMCA1) is ubiquitously distributed in tissues and cells, but only scarce information is available on its properties. The isoform was overexpressed in Sf9 cells, purified on calmodulin columns, and characterized functionally. The level of expression was very low, but sufficient amounts of the protein could be isolated for biochemical characterization. The affinity of PMCA1 for calmodulin was similar to that of PMCA4, the other ubiquitous PMCA isoform. The affinity of PMCA1 for ATP, evaluated by the formation of the phosphorylated intermediate, was higher than that of the PMCA4 pump. The recombinant PMCA1 pump was a much better substrate for the cAMP-dependent protein kinase than the PMCA2 and PMCA4 isoforms. Pulse and chase experiments on Sf9 cells overexpressing the PMCA pumps showed that PMCA1 was much less stable than the PMCA4 and PMCA2 isoforms, i.e. PMCA1 had a much higher sensitivity to degradation by calpain. The effect of calpain was not the result of a general higher susceptibility of the PMCA1 to proteolytic degradation, because the pattern of degradation by trypsin was the same in the three isoforms.  相似文献   

13.
Precise regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is achieved by the coordinated function of Ca(2+) channels and Ca(2+) buffers. Neuronal differentiation induces up-regulation of Ca(2+) channels. However, little is known about the effects of differentiation on the expression of the plasma membrane Ca(2+)-ATPase (PMCA), the principal Ca(2+) extrusion mechanism in neurons. In this study, we examined the regulation of PMCA expression during differentiation of the human neuroblastoma cell line IMR-32. [Ca(2+)](i) was monitored in single cells using indo-1 microfluorimetry. When the Ca(2+)-ATPase of the endoplasmic reticulum was blocked by cyclopiazonic acid, [Ca(2+)](i) recovery after small depolarization-induced Ca(2+) loads was governed primarily by PMCAs. [Ca(2+)](i) returned to baseline by a process described by a monoexponential function in undifferentiated cells (tau = 52 +/- 4 s; n = 25). After differentiation for 12-16 days, the [Ca(2+)](i) recovery rate increased by more than threefold (tau = 17 +/- 1 s; n = 31). Western blots showed a pronounced increase in expression of three major PMCA isoforms in IMR-32 cells during differentiation, including PMCA2, PMCA3 and PMCA4. These results demonstrate up-regulation of PMCAs on the functional and protein level during neuronal differentiation in vitro. Parallel amplification of Ca(2+) influx and efflux pathways may enable differentiated neurons to precisely localize Ca(2+) signals in time and space.  相似文献   

14.
The differentiation of colon cancer cell lines is associated with changes in calcium homeostasis. Concomitantly there are changes in the expression of some calcium transporters and G-protein-coupled receptors, which are capable of altering cytosolic-free calcium levels. Recent studies associate alterations in calcium transporter expression with tumourigenesis, such as changes in specific isoforms of the plasma membrane calcium ATPase (PMCA) in breast cancer cell lines. In this study, we examined the expression of PMCA isoforms in the HT-29 colon cancer cell line using two methods of differentiation (sodium butyrate-mediated and spontaneous post-confluency induced differentiation). Our studies show that differentiation of HT-29 colon cancer cells is associated with the up-regulation of the PMCA isoform PMCA4 but no significant alteration in PMCA1. These results suggest that PMCA4 may be important and have a specific role in colon cells as well as being significant in colon cancer tumourigenesis.  相似文献   

15.
There are four genes encoding isoforms of the plasma membrane Ca(2+) pump (PMCA). PMCA variability is increased by the presence of two splicing sites. Functional differences between the variants of PMCA have been described, but little is known about the adaptive advantages of this great diversity of pumps. In this paper we studied how the different isoforms respond to a sudden increase in Ca(2+) concentration. We found that different PMCAs are activated by Ca(2+) at different rates, PMCA 3f and 2a being the fastest, and 4b the slowest. The rate of activation by Ca(2+) depends both on the rate of calmodulin binding and the magnitude of the activation by calmodulin. We found that 2a is located in heart and the stereocilia of inner ear hair cells, 3f in skeletal muscle and 4b was identified in Jurkat cells. Both cardiac and skeletal muscle, and stereocilia recover very rapidly after a cytoplasmic Ca(2+)peak, while in Jurkat cells the recovery takes up to a minute. In stereocilia, 2a is the only method for export of Ca(2+), making the analysis of them unusually straightforward. This indicates that these rates of PMCA activation by Ca(2+) are correlated with the speed of Ca(2+) concentration decay after a Ca2 spike in the cells in which these variants of PMCA are expressed. The results suggest that the type of PMCA expressed will correspond with the speed of Ca(2+) signals in the cell.  相似文献   

16.
Coronary artery smooth muscle expresses the plasma membrane Ca(2+) pump (PMCA) isoforms PMCA4 and PMCA1. We previously reported the peptide inhibitor caloxin 1b1 that was obtained by using extracellular domain 1 of PMCA4 as the target (Am J Physiol Cell.290 [2006] C1341). To engineer inhibitors with greater affinity and isoform selectivity, we have now created a phage display library of caloxin 1b1-like peptides. We screened this library by affinity chromatography with PMCA from erythrocyte ghosts that contain mainly PMCA4 to obtain caloxin 1c2. Key properties of caloxin 1c2 are (a) Ki = 2.3 +/- 0.3 microM which corresponds to a 20x higher affinity for PMCA4 than that of caloxin 1b1 and (b) it is selective for PMCA4 since it has greater than 10-fold affinity for PMCA4 than for PMCA1, 2 or 3. It had the following functional effects on coronary artery smooth muscle: (a) it increased basal tone of the de-endothelialized arteries; the increase being similar at 10, 20 or 50 microM, and (b) it enhanced the increase in the force of contraction at 0.05 but not at 1.6 mM extracellular Ca(2+) when Ca(2+) extrusion via the Na(+)-Ca(2+) exchanger and the sarco/endoplasmic reticulum Ca(2+) pump were inhibited. We conclude that PMCA4 is pivotal to Ca(2+) extrusion in coronary artery smooth muscle. We anticipate caloxin 1c2 to aid in understanding the role of PMCA4 in signal transduction and home-ostasis due to its isoform selectivity and ability to act when added extracellularly.  相似文献   

17.
PMCA1-4 isoforms have been recently recognised as regulators of various signalling pathways in mammalian cells. PMCAs were found to interact with calcineurin A in an isoform specific manner. In this study we focus on the interaction of calcineurin A with PMCA4 and its effect on catecholamine secretion in PC12 cells with reduced PMCA2 or PMCA3 content. Reduction of synthesis of PMCA2 or PMCA3 led to upregulation of PMCA4 manifested by preferential interaction of PMCA4 with calcineurin A. On the other hand, we observed a significant reduction of dopamine secretion, which did not correspond with an increased [Ca(2+)](c). This result indicates that the interaction of PMCA4 with calcineurin A plays a regulatory role in the signalling during catecholamine secretion.  相似文献   

18.
The ability to deliver calcium to the osteoid is critical to osteoblast function as a regulator of bone calcification. There are two known transmembrane proteins capable of translocating calcium out of the osteoblast, the Na(+)/Ca(2+) exchanger (NCX) and the plasma membrane Ca(2+)-ATPase (PMCA). In this study, we reveal the presence of the NCX3 isoform in primary osteoblasts and examine the expression of NCX1, NCX3, and PMCA1 during osteoblast differentiation. The predominant NCX isoform expressed by osteoblasts is NCX3. NCX1 also is expressed, but at low levels. Both NCX isoforms are expressed at nearly static levels throughout differentiation. In contrast, PMCA expression peaks at 8 days of culture, early in osteoblast differentiation, but declines thereafter. Immunocytochemical co-detection of NCX and PMCA reveal that NCX is positioned along surfaces of the osteoblast adjacent to osteoid, while PMCA is localized to plasma membrane sites distal to the osteoid. The expression pattern and spatial distribution of NCX support a role as a regulator of calcium efflux from osteoblasts required for calcification. The expression pattern and spatial distribution of PMCA makes its role in the mineralization process unlikely and suggests a role in calcium homeostasis following signaling events.  相似文献   

19.
It is now generally accepted that non‐genomic steroids action precedes their genomic effects by modulation of intracellular signaling pathways within seconds after application. Ca2+ is a very potent and ubiquitous ion in all cells, and its concentration is precisely regulated. The most sensitive on Ca2+ increase is ATP‐consuming plasma membrane calcium pump (PMCA). The enzyme is coded by four genes, but isoforms diversity was detected in excitable and non‐excitable cells. It is the only ion pump stimulated directly by calmodulin (CaM). We examined the role of PMCA isoforms composition and CaM effect in regulation of Ca2+ uptake by estradiol, dehydroepiandrosterone (DHEA), pregnenolone (PREG), and their sulfates in a concentration range from 10?9 to 10?6 M, using the membranes from rat cortical synaptosomes, differentiated PC12 cells, and human erythrocytes. In excitable membranes with full set of PMCAs steroids apparently increased Ca2+ uptake, although to a variable extent. In most of the cases, CaM decreased transport by 30–40% below controls. Erythrocyte PMCA was regulated by the steroids somewhat differently than excitable cells. CaM strongly increased the potency for Ca2+ extrusion in membranes incubated with 17‐β‐estradiol and PREG. Our results indicated that steroids may sufficiently control cytoplasmic calcium concentration within physiological and therapeutic range. The response depended on the cell type, PMCA isoforms expression profile, CaM presence, and the steroids structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Although placental transfer of maternal calcium (Ca(2+)) is a crucial process for fetal development, the biochemical mechanisms are poorly understood. In the current study, we have investigated the characteristics of Ca(2+) fluxes in relation with cell Ca(2+) homeostasis in the human placental trophoblast cell line BeWo. Time-courses of Ca(2+) uptake by BeWo cells displayed rapid initial entry (initial velocity (V(i)) of 3.42 +/- 0.35 nmol/mg protein/min) and subsequent establishment of a plateau. Ca(2+) efflux studies with (45)Ca(2+)-loaded cells also showed rapid declined of cell-associated (45)Ca(2+) with a V(i) of efflux (Ve(i)) of 3.30 +/- 0.08 nmol/mg protein/min. Further identification of membrane gates for Ca(2+) entry in BeWo cells was carried out. Expression of Ca(2+) transporter/channel CaT1 and L-type alpha(1S) subunit was showed by RT-PCR. However, mRNA for CaT2 channel and L-type alpha(1C) and alpha(1D) subunits were not revealed. Membrane systems responsible for intracellular Ca(2+) extrusion from BeWo cells were also investigated. Plasma membrane Ca(2+)-ATPases (PMCA) and Na/Ca exchangers (NCX) were detected by Western blot in BeWo cells. Expression of specific isoforms of PMCA and NCX was further investigated by RT-PCR. Messenger RNAs of four isoforms of PMCA (PMCA 1-4) were detected. The presence of messenger RNAs of two NCX isoforms (NCX1 and NCX3) was observed. Ca(2+) flux studies in Na-free incubation medium indicated that NCX played a minimal role in the cell Ca(2+) fluxes. Inorganic ions such as cadmium and manganese did not modify the Ca(2+) fluxes, however, barium increased cell-associated (45)Ca(2+) by, in part, by reducing radiolabel exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号