共查询到20条相似文献,搜索用时 0 毫秒
1.
J. M. Klein D. P. V. de Kleijn G. Hünemeyer R. Keller W. Weidemann 《Cell and tissue research》1993,274(3):515-519
Based on the amino acid sequence of the molt-inhibiting hormone of Carcinus maenas, two degenerated oligonucleotide primers were synthesized and used in the polymerase chain reaction. By use of complementary DNA of a library constructed from medulla terminalis-X-organ RNA of C. maenas as template, the specific complementary DNA between the primers was amplified, cloned and sequenced. This strategy revealed a DNA sequence for which the deduced amino acid sequence is identical to the recently published C. maenas molt-inhibiting hormone sequence as determined by Edman degradation. Visualization of messenger RNAs encoding molt-inhibiting hormone and crustacean hyperglycemic hormone in different perikarya of the X-organ was obtained using digoxigenin-labelled complementary RNA probes. Combination of immunocytochemical staining using polyclonal antisera against the native C. maenas neuropeptides and in situ hybridization performed on alternating sections confirmed the specificity of the reaction. The results show that there is no co-localization of molt-inhibiting hormone and crustacean hyperglycemic hormone at the messenger RNA and the protein level. 相似文献
2.
Immunocytochemical localization of CCAP,a novel crustacean cardioactive peptide,in the nervous system of the shore crab,Carcinus maenas L. 总被引:1,自引:0,他引:1
Summary Polyclonal antibodies were raised in rabbits against synthetic crustacean cardioactive peptide (CCAP) conjugated to bovine thyroglobulin, and were used to map CCAP-immunoreactive structures in the central nervous system of Carcinus maenas. As expected, the neurohemal pericardial organs (PO) displayed abundant immunoreactivity in nerve fibers and terminals. In addition, immunoreactive neurons were demonstrated in other parts of the nervous system. At least some of them do not appear to terminate in neurohemal structures and may have a non-endocrine, as yet unknown function. Immunoreactive perikarya with a diameter of 25–30 m occur in the brain. They project into the optic and antennary neuropil, and into the eyestalk. One cell was found in the medulla terminalis of the eyestalk and in the connective ganglion, respectively. From the latter, axonal branches could be traced into the brain and the thoracic ganglia (TG). In the TG, small-diameter perikarya give rise to extensive networks of varicose fibers. Some of the perikarya occur in a characteristic paired arrangement with larger CCAP-immunoreactive somata (diameter 40–50 m). These pairs of one small and one large cell occur in all mouthpart and leg segments of the TG, except the abdominal ganglia (AG), where only large cells were found. The main projections of the large neurons comprise one or more fibers in each of the seven segmental nerves (SN), leading to neurosecretory terminals in the PO. The fibers in the SN are joined by branches of an ascending axonal tract from the large perikarya in the AG. The large-type perikarya are considered to be the principal source of CCAP in the PO. The optic ganglia in the eyestalk, except the medulla terminalis, the neurohemal sinus gland and the stomatogastric nervous system are devoid of CCAP-immunoreactivity.In axon terminals of the PO, CCAP is not colocalized with other PO-neuropeptides, i.e. proctolin-, FMRFamide-like, and Leu-enkephalin-like immunoreactive materials. Electron-microscopic immunocytochemistry revealed a distinct CCAP-containing granule type in specific axon profiles and terminals in the PO.The architecture of CCAP-immunoreactive neurons is discussed with respect to previous morphological studies on the origin and pathways of fibers terminating in the PO.Dedicated to Professor K.E. Wohlfarth-Bottermann, Bonn, on the occasion of his 65th birthday 相似文献
3.
Summary The phyllobranchiate gills of the green shore crab Carcinus maenas have been examined histologically and ultrastructurally. Each gill lamella is bounded by a chitinous cuticle. The apical surface of the branchial epithelium contacts this cuticle, and a basal lamina segregates the epithelium from an intralamellar hemocoel. In animals acclimated to normal sea water, five epithelial cell types can be identified in the lamellae of the posterior gills: chief cells, striated cells, pillar cells, nephrocytes, and glycocytes. Chief cells are the predominant cells in the branchial epithelium. They are squamous or low cuboidal and likely play a role in respiration. Striated cells, which are probably involved in ionoregulation, are also squamous or low cuboidal. Basal folds of the striated cells contain mitochondria and interdigitate with the bodies and processes of adjacent cells. Pillar cells span the hemocoel to link the proximal and distal sides of a lamella. Nephrocytes are large, spherical cells with voluminous vacuoles. They are rimmed by foot processes or pedicels and frequently associate with the pillar cells. Glycocytes are pleomorphic cells packed with glycogen granules and multigranular rosettes. The glycocytes often mingle with the nephrocytes. Inclusion of the nephrocytes and glycocytes as members of the branchial epithelium is justified by their participation in intercellular junctions and their position internal to the epithelial basal lamina. 相似文献
4.
Heinrich Dircksen 《Cell and tissue research》1992,269(2):249-266
Summary The sinus gland of the shore crab, Carcinus maenas, is a compact assembly of interdigitating neurosecretory axon endings abutting upon the thin basal lamina of a central hemolymph lacuna. Four types of axon endings are distinguishable by the size distribution, shape, electron density and core structure of their neurosecretory granules. One additional type of axon ending is characterized by electron-lucent vacuoles and vesicles. The axon profiles are surrounded by astrocyte-like glial cells. Various fixations followed by epoxy- or Lowicrylembedding were compared in order to optimize the preservation of the fine structure of the granule types and the antigenicity of their peptide hormone contents. By use of specific rabbit antisera, the crustacean hyperglycemic, molt-inhibiting, pigment-dispersing, and red-pigment-concentrating hormones were assigned to the four distinct granule types which showed no overlap of immunostaining. Epi-polarization microscopy and ultrathin section analysis of immunogold-stained Lowicrylembedded specimens revealed that immunoreactivity to Leu-enkephalin and proctolin is co-localized with moltinhibiting hormone immunoreactivity in the same type of granule. The size and core structure of the immunocytochemically identified granule types vary little with the different pretreatments but, in some cases, to a statistically significant extent. The present results are compared with those from earlier studies of sinus glands in different crustaceans. The methods of granule identification used in this study supplement the classical approach in granule typing; they are easier to perform and more reliable for the analysis of release phenomena in identified secretory neurons supplying the neurohemal sinus gland. 相似文献
5.
In a previous paper, we described and discussed the possible functions of calcospherite-rich cells (R* cells) in the digestive gland of the shore crab, Carcinus maenas. We recently realised that electron micrographs in this publication presented neither typical R* cells nor their calcium phosphate granules. Indeed, our pictures showed spermatophores (filled with typical spermatozoa) that had contamined hepatopancreatic cell suspensions. As the present study indicates, this contamination is difficult to detect by optical microscopy because unstained R* cells closely resemble spermatophores. However, morphological differences between these cell types appear clearly when observed by electron microscopy. The present paper describes a comparative study of cell populations isolated from female digestive glands; it validates our previous results obtained with male hepatopancreas and suggests a low containation of those male cell fractions by spermatophores. 相似文献
6.
Summary R*-cells of the digestive gland of Carcinus maenas have been investigated functionally and morphologically. A comparison of the capacity of separated cell suspensions to synthesize glycogen gave support to the hypothesis that R and R* cells belong to the same cell line. The unexpected observation of R* cells in gastric juice suggests that their release could represent a mode of redistribution of carbohydrate stores when the feeding activity of the crab is lower. Under electron microscopy, the calcospherites of R* cells appeared to be surrounded by multiple membranous layers, and displayed tubular and vesicular structures in their core. High glucose-6-phosphatase (G6Pase) activity in the subcellular fraction that is enriched in calcospherites suggests that these membranes are derived from the endoplasmic reticulum, via a process in which the enzyme plays a key role. We propose that this is the way by which the R cell differentiates into R* cell. 相似文献
7.
Summary By use of antisera raised against synthetic pigment-dispersing hormone (PDH) of Uca pugilator and FMRFamide, the distribution of immunoreactive structures in the central nervous system (CNS) of Carcinus maenas and Orconectes limosus was studied by light microscopy. In both species, a total of 10–12 PDH-positive perikarya occur amongst the anterior medial, dorsal lateral and angular somata of the cerebral ganglion (CG). In C. maenas, one PDH-perikaryon was found in each commissural ganglion (COG) and several more in the thoracic ganglion. In O. limosus, only four immunopositive perikarya could be demonstrated in the ventral nerve cord, i.e., two somata in the anterior and two in the posterior region of the suboesophageal ganglion (SOG). PDH-immunoreactive tracts and fiber plexuses were present in all central ganglia of both species, and individual axons were observed in the connectives. FMRFamide-immunoreactivity was studied in O. limosus only. Neurons of different morphological types were found throughout the entire CNS, including numerous perikarya in the anterior medial, anterior olfactory, dorsal lateral and posterior cell groups of the CG. Four perikarya were found in the COG, six large and numerous smaller ones in the SOG, and up to eight cells in each of the thoracic and abdominal ganglia. In each ganglion, the perikarya form fiber plexuses. Axons from neurons belonging to the CG could be traced into the ventral nerve cord; nerve fibers arising from perikarya in the SOG appeared to project to the posterior ganglia. In none of the structures examined colocalization of PDH- and FMRF-amide-immunoreactivity was observed.Dedicated to Prof. K.-E. Wohlfarth-Bottermann on the occasion of his 65th birthday 相似文献
8.
Summary The organ of Bellonci of Anaspides tasmaniae (Thomson) (Crustacea, Syncarida) is described light and electron microscopically, and a few histochemical tests are reported. Located ventrally in the eyestalk below the medulla interna, the organ is composed of a number of cavities. These are similar in structure in their contents and associated cellular components, which include two types of glia cells delimiting each cavity and the terminal parts of a few dendrites. Each dendrite usually bears two cilia, which project into the cavity where they split up into numerous branches. The organ is supplied by three nerve tracts: two from the medulla terminalis and one from the medulla interna. The sensory pore, which is innervated from the medulla interna, is not closely associated with the organ of Bellonci in Anaspides. No marked secretory activity is detectable by histochemical or ultrastructural observations. It is thought that the organ has a sensory function.This investigation was supported by a grant (to T.K.) from Helge Ax:son Johnsons Stiftelse. One of us (P.S.L.) was on sabbatical leave from the University of Tasmania. 相似文献
9.
10.
E. A. Santos R. Keller 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1993,163(5):374-379
The effects of glutamate, aspartate, glycine, proline, alanine, taurine, glycerol, glucose and lactate injections on the haemolymph levels of the crustancean hyperglycemic hormone and/or glucose and lactate in the shore crab, Carcinus maenas, were investigated. Only glucose and lactate caused significant changes of hyperglycaemic hormone levels. Glucose injections resulted in a drop of both hormone and lactate, while lactate had an opposite effect, i.e. it raised both crustacean hormone and glucose levels. The results suggest that during increases in glycolytic flux, lactate may cause a release of hormone by a positive feedback mechanism. The hormone would then stimulate glycogenolysis, thus increasing glucose availability. If more glucose is released than is metabolized, excess glucose may leak from the cells and suppress crustancean hyperglycemic hormone release from the X-organ/sinus gland complex by negative feedback.Abbreviations ABTS
2,2-azino-bis (3-ethylbenzthiazoline sulphonic acid)
- ANOVA
one-way analysis of variance
- BSA
bovine serum albumin
- BW
body weight
- CHH
crustacean hyperglycemic hormone
- ELISA
cnzyme-liked immunosorbent assay
- GIH
gonadinhibiting hormone
- IgG
immunoglobin G
- MIH
moult-inhibiting hormone
- MTGXO
medulla terminalis X-organ
- PB
sodium phosphate buffer
- PBS
phosphate buffered saline
- Pi
inorganic phosphate
- XO-SG
X-organ-sinus gland complex 相似文献
11.
Dr. Manfred Schmidt 《Cell and tissue research》1989,257(3):609-621
Summary The hair-peg organs of the shore crab, Carcinus maenas, are modified hair-sensilla. A small hair shaft (peg) is surrounded by a tuft of solid cuticular bristles (hairs). Each hair-peg organ is innervated by 6 sensory neurons, 2 of which have scolopidial (type-I) dendrites. The outer segments of all dendrites pass through a cuticular canal extending to the articulated hair base in which the 2 type-I dendrites terminate. The other 4 (type-II) dendrites reach the clavate tip of the hair shaft and have access to a terminal pore and a large sickle-shaped aperture. Three inner and 8–12 outer enveloping cells belong to a hair-peg organ. The innermost enveloping cell contains a scolopale, which has desmosomal connections to the ciliary rootlets of the type-I dendrites. An inner and an outer sensillum lymph space are present. The ultrastructural features of the dendrites and the cuticular apparatus indicate that the hair-peg organs are bimodal sensilla, comprising 2 mechano- and 4 chemosensitive sensory neurons. Extracellular recordings from the leg nerve indicate that the chemosensitive neurons of the hair-peg organs respond to changes in seawater concentration in the physiological range of Carcinus maenas.Supported by the Deutsche Forschungsgemeinschaft (SFB 45/A1; W. Gnatzy) 相似文献
12.
We have investigated the distribution of Ca2+ and Mg2+ in the new cuticle of moulting shore crabs (Carcinus maenas), using the K-pyroantimonate method in combination with X-ray microanalysis in order to identify antimony precipitates. During the premoult period, Ca2+ and Mg2+ accumulate in well-defined sites of the new pigmented layer. After moulting, mineralisation appears to begin preferntially at these sites. These form a honeycomb-like structure that quickly increases the rigidity of the new cuticle, with a small recruitment of material from extraneous sources. Mineralisation of the principal layer, on the other hand, immediately follows deposition of the organic matrix. Our experiments also provide evidence that the epidermal cell extensions associated with the pore canals are the means by which Ca2+ and Mg2+ are transferred from the epidermis into the mineralising cuticular layers. The plasma membrane of these cell extensions appears densely lined by particles of antimony precipitate that probably mark the location of the transporting sites. Shortly after moulting, the distribution of mineral deposits is such that the cell extensions cross the mineralised lamellae of the principal layer and constitute preferential access routes to the pigmented layer, where mineralisation is still in progress. 相似文献
13.
David L Taylor 《Journal of experimental marine biology and ecology》2004,301(1):55-73
Predation on the early life history of fish is an important factor regulating year-class strength. Verifying predation events, however, is difficult when analyses rely on visually identifying the remnants of partially digested fish in the stomachs of suspected predators. The objective of this study was to assess the utility of using immunological assays to detect the presence of winter flounder eggs and juveniles (Pseudopleuronectes americanus) in the gut contents of sand shrimp (Crangon septemspinosa) and green crab (Carcinus maenas). After defining assay capabilities, the stomach contents of field-collected shrimp and crabs were examined to determine if these predator-prey relationships occur under natural conditions. Winter flounder-specific antisera developed and used in this study successfully identified homologous antigens (egg or juvenile flounder extracts) without appreciably cross-reacting with antigenic material from predators or nontarget prey. Moreover, antisera detected flounder eggs 10.8-16.4 h after initial feeding by various sized shrimp, and identified juvenile flounder 9.4 and 7.8 h after initial ingestion by shrimp and crabs, respectively. Immuonological dietary analysis of decapod crustaceans collected from Niantic River, Connecticut, revealed that C. septemspinosa and C. maenas are potentially important predators on the early life stages of winter flounder. The temporal trends and magnitude of flounder predator-induced mortality was affected primarily by the spatial and temporal overlap between predator and prey (egg mortality), and the size-dependent relationships underlying crustacean and flatfish predator-prey interactions (juvenile mortality). 相似文献
14.
Summary The funnel-canal organs on the dactyls of the shore crab, Carcinus maenas, are innervated by 3–24 sensory cells with unbranched dendrites, which attain a length of 500–1400 m. The outer dendritic segments are enclosed in a dendritic sheath and pass through the cuticle within a canal. Two dendrite types can be distinguished according to ultrastructural criteria: Type I has a long ciliary segment, A-tubules with an osmiophilic core and arms, and a thick ciliary rootlet. Type II possesses only a short ciliary segment and a thin ciliary rootlet. Each funnel-canal organ contains two type-I dendrites. Their ciliary bases appear a few m distal to those of the type-II dendrites (1 to 22 in number). Two inner and two to eight outer enveloping cells belong to a sensillum. The innermost enveloping cell contains a large scolopale. In the second enveloping cell single scolopale rods are present. Thus, the funnel-canal organs are characterized by structural features typical for mechano-sensitive scolopidia, on the one hand, and for chemoreceptors, on the other. Therefore, the funnel-canal organs are very likely bimodal sensilla (contact chemoreceptors). A comparison with other arthropod sensilla shows that cuticular mechanoreceptors of aquatic crustaceans generally exhibit a scolopidial organization. 相似文献
15.
Three distinct clusters of crustacean cardioactive-peptide-immunoreactive neurones occur in the terminal abdominal ganglion of the crayfish species Orconectes limosus, Astacus leptodactylus, Astacus astacus and Procambarus clarkii, as revealed by immunocytochemistry of whole-mount preparations and sections. They exhibit similar topology and projection patterns in all four studied species. An anterior ventral lateral and a posterior lateral cluster contain one small, strongly stained perikaryon and two large, less intensely stained perikarya, each showing contralateral projections. A posterior medial lateral cluster of up to six cells also contains these two types of perikarya. Whereas the small type perikarya belong to putative interneurones, the large type perikarya give rise to extensive neurohaemal plexuses in perineural sheaths of the third roots of the fifth abdominal ganglia, the connectives, the dorsal telson nerves, the ganglion itself, its roots and arteriolar supply. Thin fibres from these plexuses reach newly discovered putative neurohaemal areas around the hindgut and anus via the intestinal and the anal nerves, and directly innervate the phasic telson musculature. A comparison with earlier investigations of motoneurones and segmentation indicates that these three cell groups containing putative neurosecretory neurones may be members of at least three neuromeres in this ganglion. Crustacean cardioactive peptide released from these neurones may participate in the neurohumoral and modulatory control of different neuronal and muscle targets, thereby exceeding its previously established hindgut and heart excitatory effects.Abbreviations
AG
abdominal ganglion
-
adpl
arteria dorsalis pleica
-
Ala
arreria lateralis abdominalis
-
Asub
arteria subneuralis
-
CCAP
crustacean cardioactive peptide
-
CNS
central nervous system
-
IR
immunoreactive
-
LG
lateral giant axon
-
LTr
lateral tract
-
MDT
medial dorsal tract
-
MG
medial giant axon
-
M Tr
medial tract
-
mcan
musculus compressor ani
-
mfltp
museulus flexor telsonos posterior
-
nan
nervus ani (AG6 N5)
-
nant
nervus anterior (AG6 N1, N2)
-
nia
nervus intestinal anterior
-
nin
nervus intestinalis (AG6 N7)
-
nip
nervus intestinalis posterior
-
nteld
nervus telsonos dorsalis (AG6 N6)
-
nielv
nervus telsonos ventralis (AG6 N4)
-
nur
nervus uropedalis (AG6 N3)
-
nven
nervus ventralis (AG5 N3)
-
PIR
peri-intestinal ring
-
PTF
posterior telson flexor
-
VLT
ventral lateral tract
-
VMT
ventral medial tract
-
VNC
ventral nerve cord
-
VIF
ventral telson flexor
-
AVLC, PLC, PMLC
anterior ventral lateral, posterior lateral, posterior medial lateral CCAP-immunoreactive cell cluster
-
A6AVC, A7AVC
anterior ventral commissures
-
A7DCI
dorsal commissure I
-
A7PVC
posterior ventral commissure
-
A7SCII
sensory commissure II
-
A7VCII, A7VCIII
ventral commissures II and III of the sixth (A6) and seventh (A7) abdominal neuromer 相似文献
16.
Dr. G. Smith 《Cell and tissue research》1974,155(1):117-125
Summary The sinus gland of Carcinus maenas consists of the swollen axonal endings of the neurosecretory cells of the major ganglia and acts as a storage release centre for the membrane bound neurosecretory material. These neurosecretory granules fall into five different types based on size and electron density. Their contents are released by exocytosis of the primary granules or smaller units budded from the primary granules.I thank Professor E. Naylor for his constant advice and Professor E. W. Knight-Jones, Department of Zoology, University College, Swansea, for the provision of laboratory facilities. I am grateful to the Science Research Council for the financial support. Finally, I thank the Electron Microscope Unit, Southampton General Hospital, where the work was completed. 相似文献
17.
Summary Light-microscopical observations with immunofluorescence and peroxidase staining procedures revealed leu-enkephalin-like immunoreactivity in axon profiles of the sinus gland (SG) and in single small neurons in the optic ganglia of the eyestalk of Carcinus maenas. Electron microscopy of the SG showed reactivity to be associated with neurosecretory granules 82±23 nm in diameter. High performance liquid chromatography of SG-extracts revealed radioimmunoreactive substances with the retention times of synthetic met- and leu-enkephalin and met-enkephalin-Arg6-Phe7, respectively. 相似文献
18.
Summary Crayfish haemolymph contains three types of haemocytes with cytoplasmic granules: coagulocytes, granulocytes and amoebocytes. Muscle degeneration was induced by either a gross mechanical injury or a mild puncture injury of m. extensor carpopoditi. Granulocytes and amoebocytes were involved in the phagocytosis of disintegrating muscle fibres. Within three weeks after the gross injury the first myotubes were found. The formation of regenerated fibres started before the degenerating material was removed completely. Mild injury resulted in the formation of contraction clots, localized at the ends of a fibre and connected to a persistent external lamina in the form of an empty sheath. The external lamina sheaths were invaded by amoebocytes. They arranged themselves into a superficial layer similar to an epithelium, formed gap junctions and zonulae adherentes, and showed an increase in the number of cytoplasmic microtubules. These transformed haemocytes retained their ability to engulf material of the disintegrating fibre. In about three weeks the number of microtubules in the transformed haemocytes decreased, and newly formed contractile filaments appeared. Satellite cells are present along the normal crayfish muscle fibres. Following their activation in degenerated material, they might conceivably induce the transformation of haemocytes into myogenic cells. 相似文献
19.
Sigrid Mangerich Prof. Rainer Keller Heinrich Dircksen 《Cell and tissue research》1986,245(2):377-386
Summary By use of an antiserum raised against the Nterminal sequence pGlu-Leu-Asn-Phe..., common to red pigment-concentrating hormone (RPCH) of Pandalus borealis and three structurally similar insect neuropeptides, putative RPCH-immunopositive structures were revealed in the eyestalks of Carcinus maenas and Orconectes limosus and in the brain and thoracic ganglion (TG) of C. maenas. In the eyestalks, complete neurosecretory pathways were demonstrated, consisting of perikarya, axons and terminals in the neurohemal organ, the sinus gland (SG). In C. maenas approximately 20 small RPCH cells are present as a distinct group adjacent to the medulla terminalis ganglionic X-organ (MTGXO, XO). They are morphologically different from the larger XO perikarya, which contain the crustacean hyperglycemic hormone (CHH). The occurrence of both neuropeptides in distinct neurosecretory pathways was ascertained by immunologic double staining (PAP/gold) or by analysis of consecutive sections. In addition, a group of two to four larger RPCH cells is located in the proximal part of the MT. In O. limosus, RPCH cells are found in the XO. Cells corresponding to the proximal MT cells of C. maenas were not found. In both species, a few more weakly staining immunopositive perikarya were observed in clusters of cell somata of the optic ganglia. It is uncertain whether these are connected to the SG.In the brain of C. maenas, several smaller and three larger perikarya were consistently observed in the dorsal lateral cell somata adjacent to the olfactory lobes. In the optic nerve, two axons that project into the eyestalk were stained. Some axons were also observed in the ventral median neuropil of the brain. In the TG, RPCH cells were found in small numbers in median positions, i.e., in clusters of somata between the ganglia of the appendages.HPLC analysis of the red pigment-concentrating activity from the SG of C. maenas revealed that the retention time of the neuropeptide is similar but not identical to that of Pandalus borealis RPCH. 相似文献
20.
Summary Two laminae composed of smooth muscles, elastic tissue and collagen have been described in relation with the gill skeleton in Perca fluviatilis. A transverse smoothmuscle lamina joins the base of the cartilage rods of the two opposite hemibranchs. A longitudinal smooth-muscle lamina runs parallel to the afferent branchial artery and joins the cartilage rods from one filament to the other. In both laminae, the formaldehyde-induced fluorescence technique (Falck-Hillarp) reveals a network of nerve fibers displaying a green fluorescence characteristic of catecholamines. At the ultrastructural level, the presence of nerve endings containing clear and granular vesicles, and the degeneration of these endings after 6-hydroxydopamine treatment confirm the aminergic nature and the sympathetic origin of this innervation. Surgical denervation brings evidence that the innervation of both laminae is supplied by the metatrematic branches of the branchial nerves. The role of these smooth-muscle laminae remains speculative. 相似文献