首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NMDA receptors regulating hippocampal noradrenaline (NA) and striatal dopamine (DA) release have been compared using superfused synaptosomes prelabelled with the [(3)H]catecholamines. Both receptors mediated release augmentation when exposed to NMDA plus glycine. Quinolinic acid (100 microM or 1 mM) plus glycine (1 microM)-elicited [(3)H]NA, but not [(3)H]DA release. The NMDA (100 microM)-evoked release of [(3)H]NA and [(3)H]DA was similar and concentration-dependently enhanced by glycine or D-serine (0.1-1 microM); in contrast, the HIV-1 envelope protein gp120 potently (30-100 pM) enhanced the NMDA-evoked release of [(3)H]NA, but not that of [(3)H]DA. Gp120 also potentiated quinolinate-evoked [(3)H]NA release. Ifenprodil (0.1-0.5 microM) or CP-101,606 (0.1-10 microM) inhibited the NMDA plus glycine-evoked release of both [(3)H]catecholamines. Zinc (0.1-1 microM) was ineffective. Lowering external pH from 7.4 to 6.6 strongly inhibited the release of [(3)H]NA elicited by NMDA plus glycine, whereas the release of [(3)H]DA was unaffected. The protein kinase C inhibitors GF 109203X (0.1 microM) or H7 (10 microM) selectively prevented the effect of NMDA plus glycine on the release of [(3)H]NA. GF 109203X also blocked the release of [(3)H]NA induced by NMDA or quinolinate plus gp120. It is concluded that the hippocampal NMDA receptor and the striatal NMDA receptor are pharmacologically distinct native subtypes, possibly containing NR2B subunits but different splice variants of the NR1 subunit.  相似文献   

2.
Excessive activation of NMDA glutamate receptors and the resulting loss of intracellular Ca2+ homeostasis may be lethal (excitotoxic) to neurons. Such excitotoxicity can be induced in vivo by intrastriatal infusion of quinolinate, as this substance selectively activates NMDA receptors. The aim of the present research was to investigate whether the in vivo treatment of striatal tissue with quinolinate would lead to an early impairment of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity or mitochondrial Ca2+ sequestration, two intracellular mechanisms involved in Ca2+ homeostasis and signaling. Sodium quinolinate was infused intrastriatally into adult rats, and 6 h later the brains were removed and the corpora striata dissected. At this time point, striatal sections stained with Fluoro-Jade, a cellular marker of cell death, showed initial signs of neuronal degeneration. In addition, SERCA activity decreased 39% in relation to the activity observed in the control striata. A corresponding decrease of the same magnitude in 45Ca2+ uptake by striatal microsomes was also found in the treated striata. Western blot analysis did not indicate any decrease in SERCA levels in striatal tissue after quinolinate infusion. Mitochondrial Ca2+ sequestration was still preserved in quinolinate-treated striatal tissue when the assay was carried out in the presence of physiological concentrations of ATP and Mg2+. These results suggest that impairment of the SERCA function may be an early event in excitotoxicity.  相似文献   

3.
The responses of dorsal horn neurones to the excitatory amino acids quisqualate, kainate, N-methyl-D-aspartate (NMDA), and quinolinate have been examined in an in vitro preparation of the rat spinal cord. The antagonism of these responses by iontophoretically applied D-(-)-2-amino-5-phosphonovalerate (DAPV), kynurenate, and acridinate was tested, and the results were compared with data obtained from the spinal cord in vivo. The pattern of antagonism was similar in both preparations, although the potencies of agonists and antagonists were found to be significantly greater in vitro. The antagonism of amino acid induced firing of neurones was also recorded during the application of DAPV and kynurenate in the bathing medium. Dose-response curves and IC50 values were determined for these antagonists against all four agonists. The responses to quinolinate were antagonized differently from those to NMDA, quisqualate, or kainate, suggesting that quinolinate does not act specifically through the NMDA receptor as it does in other regions, nor does it appear to act via two or more of the three archetypal amino acid receptors. These findings suggest that a fourth amino acid receptor responsible for quinolinate's action in the spinal cord may exist.  相似文献   

4.
Intracellular recordings were made from the circular smooth muscle cells of the canine jejunum to study the effect of exogenous ATP and to compare the ATP response to the nonadrenergic, noncholinergic (NANC) inhibitory junction potential (IJP) evoked by electrical field stimulation (EFS). Under NANC conditions, exogenous ATP evoked a transient hyperpolarization (6.5 +/- 0.6 mV) and EFS evoked a NANC IJP (17 +/- 0.4 mV). Omega-conotoxin GVIA (100 nM) and a low-Ca(2+), high-Mg(2+) solution abolished the NANC IJP but had no effect on the ATP-evoked hyperpolarization. The ATP-evoked hyperpolarization and the NANC IJP were abolished by apamin (1 microM) and N(G)-nitro-L-arginine (100 microM). Oxyhemoglobin (5 microM) partially (38.8 +/- 5.5%) reduced the amplitude of the NANC IJP but had no effect on the ATP-evoked hyperpolarization. Neither the NANC IJP nor the ATP-evoked hyperpolarization was affected by P2 receptor antagonists or agonists, including suramin, reactive blue 2, 1-(N, O-bis-[5-isoquinolinesulfonyl]-N-methyl-L-tyrosyl)-4-phenylpiperazine , pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, alpha, beta-methylene ATP, 2-methylthioadenosine 5'-triphosphate tetrasodium salt, and adenosine 5'-O-2-thiodiphosphate. The data suggest that ATP evoked an apamin-sensitive hyperpolarization in circular smooth muscle cells of the canine jejunum via local production of NO in a postsynaptic target cell.  相似文献   

5.
Cellular membrane potential and ciliary motility were examined in tissues cultures prepared from frog palate and esophagus epithelia. Addition of micromolar concentrations of extracellular ATP caused membrane hyperpolarization and enhanced the beat frequency. These two effects of ATP were 1) dose dependent, reaching a maximum at 10 microM ATP; 2) dependent on the presence of extracellular Ca2+ or Mg2+; 3) insensitive to inhibitors of voltage-gated calcium channels; 4) abolished after depleting the intracellular Ca2+ stores with thapsigargin; 5) attenuated by quinidine (1 mM), Cs+ (5-20 mM), and replacement of extracellular Na+ by K+; 6) insensitive to charybdotoxin (5-20 nM), TEA (1-20 microM), and apamin (0.1-1 microM); 7) independent of initial membrane potential; and 8) unaffected by amiloride. In addition, extracellular ATP induced an appreciable rise in intracellular Ca2+. Addition of thapsigargin caused an initial enhancement of the ciliary beat frequency and membrane hyperpolarization. These results strongly suggest the involvement of calcium-dependent potassium channels in the response to ATP. The results show that moderate hyperpolarization is closely associated with a sustained enhancement of ciliary beating by extracellular ATP.  相似文献   

6.
T W Stone 《Life sciences》1991,48(8):765-772
Neurones in rat hippocampal slices were excited by microiontophoretic applications of N-methyl-D-aspartate (NMDA) and kainate. Responses to NMDA were potentiated by glycine 300 microM or 1 mM in the perfusing medium. A small potentiation of kainate was not observed in the presence of the NMDA antagonist 2-amino-5-phosphonopentanoic acid (2AP5). The potentiation of NMDA responses by glycine was not prevented by strychnine 5 or 30 microM and was also shown by D-serine and L-kynurenine but not L-leucine. If sensitivity to NMDA was reduced by kynurenic acid, glycine and L-kynurenine produced a greater enhancement of NMDA. The requirement of NMDA receptor activation for the occupation of strychnine-resistant glycine sites can thus be demonstrated in complex systems such as brain slices. It is possible that L-kynurenine may also be an endogenous ligand capable of modulating NMDA sensitivity.  相似文献   

7.
Noradrenaline potently antagonizes the effects of N-methyl-D-aspartate (NMDA) (80 microM) on cyclic GMP production in immature rat cerebellar slices in vitro (IC50 = 0.6 microM). The effect is stereospecific (D-noradrenaline, IC50 = 100 microM), and also observed with adrenaline (IC50 = 0.5 microM) and isoprenaline (IC50 = 1.2 microM). The alpha 1-adrenoceptor agonists methoxamine or phenylephrine or the mixed alpha 1/alpha 2 agonists oxymetazoline or xylometazoline (100 microM) do not block the effects of NMDA, but the alpha 2-adrenoceptor agonist clonidine is weakly active (IC50 = 200 microM). Salbutamol and terbutaline were also inactive except at high concentrations (300 microM), as were a number of other catechol and phenylethylamine derivatives. The antagonistic effects of noradrenaline on the NMDA response were insensitive to phentolamine, atenolol, or propranolol (up to 100 microM), but were blocked by the alpha 2 antagonist idazoxan (1-10 microM). The Na+,K+-ATPase inhibitor ouabain (0.1-10 microM) markedly potentiates the effects of NMDA in this model, and also antagonizes and reverses the ability of noradrenaline (10 microM) to block the effects of NMDA. The results suggest that noradrenaline and Na+,K+-ATPase activity have potent modulatory effects on the NMDA response.  相似文献   

8.
The applicability of the potential-sensitive dye diS-C3-(5) for the study of A23187 + Ca2+ induced plasma membrane hyperpolarization was tested in rat brain synaptosomes. An appropriate dye synaptosome ratio was chosen for the fluorescence titration dye in Ca-free Krebs-Ringer solution. The fluorescence intensity of the probe was increased upon the addition of Ca2+ (1 microM) to the synaptosomes in the presence of A23187 (1 microM). The effect of Ca2+ + A23187 persisted in a Na+-free medium or when Na+ channels were inhibited by tetrodotoxin as well as in high K+-depolarized synaptosomes (75 microM KCl). In the presence of oligomycin or a protonophore (1 microM) the effect of Ca2+ + A23187 was suppressed. This suggests that the A23187-induced fluorescence increase is due to a depolarization of intrasynaptosomal mitochondria. Therefore, the use of the dye diS-C3-(5) for the study of Ca-induced hyperpolarization does not seem to be feasible unless a quantitative model of changes in fluorescence related to the plasma and mitochondrial membrane potentials is elaborated.  相似文献   

9.
Stearic acid is a long-chain saturated fatty acid consisting of 18 carbon atoms without double bonds. In the present study, we reported the neuroprotective effects and mechanism of stearic acid on cortical or hippocampal slices insulted by oxygen-glucose deprivation, NMDA or hydrogen peroxide (H(2)O(2)) in vitro. Different types of models of brain slice injury in vitro were developed by 10 min of oxygen/glucose deprivation, 0.5 mM NMDA or 2 mM H(2)O(2), respectively. After 30 min of preincubation with stearic acid (3-30 microM), cortical or hippocampal slices were subjected to oxygen-glucose deprivation, NMDA or H(2)O(2). Then the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride (TTC) method. Population spikes were recorded in randomly selected hippocampal slices. Stearic acid (3-30 microM) dose-dependently protected brain slices from oxygen-glucose deprivation, NMDA and H(2)O(2) insults. Its neuroprotective effect against H(2)O(2) insults can be completely blocked by wortmannin (inhibitor of PI3K) and partially blocked by H7 (inhibitor of PKC) or genistein (inhibitor of TPK). Treatment of cortical or hippocampal slices with 30 microM stearic acid resulted in a significant increase in PI3K activity at 5, 10, 30 and 60 min. These observations reveal that stearic acid can protect cortical or hippocampal slices against injury induced by oxygen-glucose deprivation, NMDA or H(2)O(2), and its neuroprotective effects are via phosphatidylinositol 3-kinase dependent mechanism.  相似文献   

10.
Neurons isolated from the CA-1 region of rat hippocampal slices by the "vibrodissociation" method were voltage-clamped in the whole cell configuration. The currents through NMDA channels were recorded in response to rapid application (solution exchange time <30 ms) of 100 microM aspartate (ASP) in a Mg2+-free solution in the presence of 3 microM glycine. When added to the ASP solution, amantadine as well as other amino-adamantane derivatives (AAD) produced an open-channel blockade of NMDA channels. Membrane hyperpolarization enhanced the AAD block. The affinity between NMDA channels and AAD was different for various AAD. The analysis of the experimental data led us to conclude that this affinity depended both on the molecular size of the blocker (calculated using HyperChem molecular modeling program) and on the blocker's hydrophobicity (calculated according to Hansch and Leo, 1979). The affinity between NMDA channels and AAD diminished with an increase in molecular size and raised with an increase in blocker's hydrophobicity. We propose an empirical equation which describes the dependence of affinity on the size and hydrophobicity of the blocker. The estimated critical diameter of the NMDA channel pore where the AAD blocking site is located proved to be about 17 A.  相似文献   

11.
1. The effects of the excitatory amino acid agonists kainate (KA), quisqualate (QUIS), and N-methyl-D-aspartate (NMDA) were studied in vitro on the hemisected frog spinal cord. 2. Prolonged (1.0 hr) application of excitatory amino acid agonists (KA, 50 or 300 microM; QUIS, 30 microM; NMDA, 300 microM) significantly reduced the ventral root potentials (VRPs) and [K+]0 evoked by a dorsal root tetanus (10 sec, 25 Hz), by brief (10 sec) applications of the same agonists (KA, 30 microM; QUIS, 30 microM; NMDA, 300 microM), and by GABA (10 sec, 1.0 mM). 3. The effect was essentially irreversible and persisted despite 2-4 hr of washing. 4. Excitatory amino acid antagonists (APV, 30 microM and kynurenate, 2 mM) blocked the neurotoxic effects of the excitatory agonists NMDA and KA respectively, an observation which indicates the observed effects of the agonists require the activation of specific excitatory receptors. 5. TTX did not alter the neurotoxic effects of KA suggesting that interneuronal firing does not contribute to the observed changes. 6. Addition of high K+ did not duplicate the effect of prolonged excitatory amino acid agonist exposure, an indication that elevation of K+ does not cause the decreased responses. 7. Light microscopy did not provide any evidence of gross tissue damage. 8. The parallel reduction of postsynaptic responses and delta [K+]0 support the idea that elevation of extracellular [K+] by afferent stimuli results from interneuronal activity.  相似文献   

12.
The effects of the mono- and tetrasialogangliosides, GM1 and GQ1b, on ATP-induced long-term potentiation (LTP) were studied in CA1 neurons of guinea pig hippocampal slices. Application of 5 or 10 microM ATP for 10 min resulted in a transient depression followed by a slow augmentation of synaptic transmission, leading to LTP. LTP induced by treatment with 5 microM ATP was facilitated in hippocampal slices prepared from animals treated for 6 days with a ceramide analog, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propranol, which stimulates ganglioside biosynthesis. In addition, LTP induced by 5 microM ATP was significantly enhanced when naive slices were incubated with GQ1b but not with GM1. These results suggest that a cooperative effect between extracellular ATP and GQ1b enhances ATP-induced LTP in hippocampal CA1 neurons. In addition, the LTP induced by 10 microM ATP was blocked by coapplication of the NMDA antagonist AP5 (5 microM or 50 microM), and this effect was partially inhibited by GQ1b pretreatment of the slices, suggesting that in hippocampal CA1 neurons, the enhancing effect of GQ1b on ATP-induced LTP is mediated by modulation of NMDA receptors/Ca(2+) channels.  相似文献   

13.
The aim of the present work is to investigate a putative junction transmission [nitric oxide (NO) and ATP] in the human colon and to characterize the electrophysiological and mechanical responses that might explain different functions from both neurotransmitters. Muscle bath and microelectrode techniques were performed on human colonic circular muscle strips. The NO donor sodium nitroprusside (10 microM), but not the P2Y receptor agonist adenosine 5'-O-2-thiodiphosphate (10 microM), was able to cause a sustained relaxation. NG-nitro-L-arginine (L-NNA) (1 mM), a NO synthase inhibitor, but not 2'-deoxy-N6-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) (10 microM), a P2Y antagonist, increased spontaneous motility. Electrical field stimulation (EFS) at 1 Hz caused fast inhibitory junction potentials (fIJPs) and a relaxation sensitive to MRS 2179 (10 microM). EFS at higher frequencies (5 Hz) showed biphasic IJP with fast hyperpolarization sensitive to MRS 2179 followed by sustained hyperpolarization sensitive to L-NNA; both drugs were needed to fully block the EFS relaxation at 2 and 5 Hz. Two consecutive single pulses induced MRS 2179-sensitive fIJPs that showed a rundown. The rundown mechanism was not dependent on the degree of hyperpolarization and was present after incubation with L-NNA (1 mM), hexamethonium (100 microM), MRS 2179 (1 microM), and NF023 (10 microM). We concluded that single pulses elicit ATP release from enteric motor neurons that cause a fIJP and a transient relaxation that is difficult to maintain over time; also, NO is released at higher frequencies causing a sustained hyperpolarization and relaxation. These differences might be responsible for complementary mechanisms of relaxation being phasic (ATP) and tonic (NO).  相似文献   

14.
The neuronal transporter excitatory amino acid carrier 1 (EAAC1) is enriched in perisynaptic regions, where it may regulate synaptic spillover of glutamate. In this study we examined potential interactions between EAAC1 and ionotropic glutamate receptors. N-Methyl-D-aspartate (NMDA) receptor subunits NR1, NR2A, and NR2B, but not the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluR2, were co-immunoprecipitated with EAAC1 from neuron-enriched hippocampal cultures. A similar interaction was observed in C6 glioma and human embryonic kidney cells after co-transfection with Myc epitope-tagged EAAC1 and NMDA receptor subunits. Co-transfection of C6 glioma with the combination of NR1 and NR2 subunits dramatically increased (approximately 3-fold) the amount of Myc-EAAC1 that can be labeled with a membrane-impermeable biotinylating reagent. In hippocampal cultures, brief (5 min), robust (100 microM NMDA, 10 microM glycine) activation of the NMDA receptor decreased biotinylated EAAC1 to approximately 50% of control levels. This effect was inhibited by an NMDA receptor antagonist, intracellular or extracellular calcium chelators, or hypertonic sucrose. Glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid with cyclothiazide, and thapsigargin mimicked the effects of NMDA. These studies suggest that NMDA receptors interact with EAAC1, facilitate cell surface expression of EAAC1 under basal conditions, and control internalization of EAAC1 upon activation. This NMDA receptor-dependent regulation of EAAC1 provides a novel mechanism that may shape excitatory signaling during synaptic plasticity and/or excitotoxicity.  相似文献   

15.
In rat mesencephalic cell cultures, L-glutamate at concentrations ranging from 100 microM to 1 mM stimulated release of [3H]dopamine that was attenuated by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6,7-dinitroquinoxalinedione, but not by the selective NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801; 10 microM) and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (300 microM). Even at 1 mM glutamate, this release was Ca2+ dependent. These observations suggest that the release was mediated by a non-NMDA receptor. Only release stimulated by a lower concentration (10 microM) of glutamate was inhibited by MK-801 (10 microM), indicating that glutamate at this concentration activates the NMDA receptor. By contrast, L-aspartate at concentrations of 10 microM to 1 mM evoked [3H]dopamine release that was completely inhibited by MK-801 (10 microM) and was also Ca2+ dependent (tested at 1 and 10 mM aspartate). Thus, effects of aspartate involved activation of the NMDA receptor. Sulfur-containing amino acids (L-homocysteate, L-homocysteine sulfinate, L-cysteate, L-cysteine sulfinate) also evoked [3H]dopamine release. Release evoked by submillimolar concentrations of these amino acids was attenuated by MK-801 (10 microM), indicating involvement of the NMDA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Two different electrophysiological responses in amphibian sympathetic ganglia were studied by means of the sucrose gap technique; the potassium-activated hyperpolarization (KH) which serves as an index of electrogenic Na+ pumping, and the hyperpolarization induced by adrenaline (AdH). Under appropriate experimental conditions, 0.1 microM adrenaline potentiated the KH to 121.5 +/- 7.5% of control (n = 7). This potentiation was blocked by both yohimbine (50 nM) and prazosin (1 microM) but not by propranolol (1 microM). Clonidine (10 nM) potentiated the KH to 113.5 +/- 3.4% of control (n = 5), whereas methoxamine (0.1 microM) was ineffective. Several lines of evidence argued against the hypothesis that the AdH may be generated, in whole or in part, by stimulation of the Na+ pump. For example, the AdH was sometimes completely unaffected when the KH was blocked by ouabain, and the AdH was eliminated by 2 mM Ba2+ even though this cation enhanced membrane hyperpolarization accompanying electrogenic Na+ pumping. These results imply that the electrogenic Na+ pump is not involved in the short-term electrophysiological effects of catecholamines. Despite this, it is possible that the homeostasis of Na+ and K+ in nerve may be regulated by alpha-adrenergic mechanisms.  相似文献   

17.
This study examined the transduction pathways activated by epinephrine in the pacemaker region of the toad heart. Recordings of membrane potential, force, and intracellular Ca(2+) concentration ([Ca(2+)](i)) were made from arrested toad sinus venosus. Sympathetic nerve stimulation activated non-alpha-, non-beta-adrenoceptors to evoke a membrane depolarization and a transient increase in [Ca(2+)](i). In contrast, the beta-adrenoceptor agonist isoprenaline (10 microM) caused membrane hyperpolarization and decreased [Ca(2+)](i). The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM) mimicked the isoprenaline-evoked membrane hyperpolarization. Epinephrine (10-50 microM) caused an initial membrane depolarization and an increase in [Ca(2+)](i) followed by membrane hyperpolarization and decreased [Ca(2+)](i). The membrane depolarizations evoked by sympathetic nerve stimulation or epinephrine were abolished either by the phospholipase C inhibitor U-73122 (20 microM) or by the blocker of D-myo-inositol 1,4,5,-trisphosphate-induced Ca(2+) release, 2-aminoethoxydiphenyl borate (2-APB, 60 microM). Neither U-73122 nor 2-APB had an affect on the membrane hyperpolarization evoked by beta-adrenoceptor activation. These results suggest that in the toad sinus venosus, two distinct transduction pathways can be activated by epinephrine to cause an increase in heart rate.  相似文献   

18.
Abstract: Impaired energy metabolism may contribute to the pathogenesis of late-onset neurodegenerative disorders such as Alzheimer's disease by increasing neuronal vulnerability to excitotoxic damage through the NMDA receptor. The effects of metabolic impairment on the striatum have been extensively examined, but relatively little is known regarding the vulnerability of the hippocampus. To examine the effect of metabolic impairment on the hippocampal formation, malonate (0.25–2.5 µmol), a reversible inhibitor of succinate dehydrogenase, was administered by stereotaxic injection into the hippocampus of male Sprague-Dawley rats. Neuronal loss was assessed by Nissl stain, and immunocytochemistry was used to examine cytoskeletal disruption. Malonate produced a dose-dependent lesion in which CA1 pyramidal neurons were most vulnerable, followed by CA3 and dentate gyrus. Cytoskeletal alterations included the loss of microtubule-associated protein 2 (MAP2) and dendritic MAP1B immunoreactivity, whereas axonal MAP1B and τ proteins were relatively spared. Spatially and temporally correlated with the loss of MAP2 was an increase in the immunoreactivity of calpain-cleaved spectrin. A similar pattern of neuronal damage and cytoskeletal disruption was produced by intrahippocampal injection of quinolinate (0.1 µmol), an NMDA agonist. Although these results are consistent with the hypothesis that metabolic impairment results in excitotoxic death, MK-801 (dizocilpine maleate), a noncompetitive NMDA receptor antagonist, did not attenuate the lesions produced by malonate but was effective against quinolinate. The results suggest that NMDA receptor activation is not required for malonate-induced damage in the hippocampal formation.  相似文献   

19.
Chen SJ  Wu CC  Yang SN  Lin CI  Yen MH 《Life sciences》2000,68(6):659-668
We have examined the role of membrane hyperpolarization in mediating vascular hyporeactivity induced by bacterial lipopolysaccharide (LPS) in endothelial-denuded strips of rat thoracic aorta ex vivo. The injection of rats with LPS caused a significant fall of blood pressure and a severe vascular hyporeactivity to norepinephrine. The membrane potential recording showed that endotoxemia caused a hyperpolarization when compared to the control. This hyperpolarization was fully restored by methylene blue (MB; 10 microM) and partially reversed by Nomega-nitro-L-arginine methyl ester (L-NAME; 0.3 mM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), tetraethylammonium (TEA; 10 mM), charybdotoxin (CTX; 0.1 microM), or glibenclamide (GB; 10 microM), however, this hyperpolarization was not significantly affected by apamin (0.1 microM), 4-aminopyridine (4-AP; 1 mM), or Ba2+ (50 microM). In addition, the basal tension of the tissues obtained from endotoxemic rats was enhanced by the following order: MB > or = ODQ > TEA > or = L-NAME > or = CTX > GB; whereas apamin, 4-AP or Ba2+ had no significant effects on these tissues. In contrast, none of these inhibitors had significant effects on the membrane potential or the basal tension in control tissues. Our electrophysiological results further confirmed previous studies showing that in addition to nitric oxide, the large conductance Ca2+-activated K+-channels and ATP-sensitive K+-channels are, most likely, responsible for endotoxin-mediated hyporeactivity to vasoconstrictor agents in vascular smooth muscle.  相似文献   

20.
The N-methyl-D-aspartate (NMDA) type of glutamate receptor (NMDAR) plays central roles in normal and pathological neuronal functioning. We have examined the regulation of the NR1 subunit of the NMDAR in response to excessive activation of this receptor in in vitro and in vivo models of excitotoxicity. NR1 protein expression in cultured cortical neurons was specifically reduced by stimulation with 100 microM NMDA or glutamate. NMDA decreased NR1 protein amounts by 71% after 8 h. Low NMDA concentrations (< or = 10 microM) had no effect. NR1 down-regulation was inhibited by the general NMDAR antagonist DL-AP5 and also by ifenprodil, which specifically antagonizes NMDARs containing NR2B subunits. Arrest of NMDAR signaling with DL-AP5 after brief exposure to NMDA did not prevent subsequent NR1 decrease. Down-regulation of NR1 did not involve calpain cleavage but resulted from a decrease in de novo synthesis consequence of reduced mRNA amounts. In contrast, NMDA did not alter the expression of NR2A mRNA or newly synthesized protein. In neurons transiently transfected with an NR1 promoter/luciferase reporter construct, promoter activity was reduced by 68% after 2 h of stimulation with NMDA, and its inhibition required extracellular calcium. A similar mechanism of autoregulation of the receptor probably operates during cerebral ischemia, because NR1 mRNA and protein were strongly decreased at early stages of blood reperfusion in the infarcted brains of rats subjected to occlusion of the middle cerebral artery. Because NR1 is the obligatory subunit of NMDARs, this regulatory mechanism will be fundamental to NMDAR functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号