首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion-mediating molecules of human monocytes   总被引:1,自引:0,他引:1  
Adhesion of monocytes to each other and to T cells and substrates is increased by phorbol esters. In the presence of these compounds monocyte aggregation was almost completely inhibited (greater than 90%) by monoclonal antibody 60.3. This antibody recognizes GP90 (CD18), a leukocyte surface glycoprotein which is separately and noncovalently associated to either GP160 (CD11a), GP155 (CD11b), or GP130 (CD11c). Anti-LFA-1 antibody (CD11a) was only partially inhibitory (35%) while antibodies 60.1 (CD11b) and anti-Leu-M5 (CD11c) had a minimal inhibitory effect (10%). Antibody LB-2 recognizing a single glycoprotein distinct from the GP90-GP160 complex and expressed on activated B and T cells, monocytes, and vascular endothelial cells was partially inhibitory (22%). Monoclonal antibodies anti-C3bR (CD35), T29/33 (CD45, leukocyte common antigen 200). TA-1 (CD11a), OKM1 (CD11b), F10-44-2 (brain-leukocyte antigen), OKM5 (monocyte-endothelial cell antigen) and to class I or class II molecules exerted no inhibition on the monocyte aggregation. Fab fragments of antibody 60.3 efficiently inhibited not only monocyte aggregation in the absence or presence of phorbol esters but also adhesion of these cells to autologous or allogeneic T lymphocytes and, to a lesser extent, to plastic surfaces. It is thus concluded that GP90, either alone or associated to the larger glycoproteins, and LB-2 antigen mediate monocyte adhesion.  相似文献   

2.
Treatment of Raji or Daudi cells with human serum under conditions which allow the alternative pathway of C activation results in their C3-opsonization and enhanced sensitivity to NK-mediated lysis. The effector lymphocytes have low buoyant density, carry CD16 and HNK1 markers as well as the CD11a-c/CD18 leukocytic cell adhesion molecules. One of these molecules, made up of CD11b-CD18 (alpha- and beta-chains), is also the receptor for iC3b. We studied the role of the cell adhesion molecules in the NK effect on targets with and without C3-fragments. We focused on the E/T interaction of opsonized cells in the presence of anti CD18 mAb. mAb directed to the CD11a molecule caused 0 to 30% inhibition of the lysis of both non-opsonized and opsonized cells whereas the mAb antibody directed to the CD11c molecule had no effect. Reagents reactive with the iC3b binding site of CD11b (alpha-chain of the CR3) molecule did not alter the lysis of non-opsonized targets whereas they abrogated the C3-mediated increment of the Nk effect on opsonized cells. Two mAb preparations, 60.3 and IB4, directed to the CD18 chain shared by the three cell adhesion molecules abrogated in a dose-dependent way the lysis of both non-opsonized and opsonized targets. The 60.3 mAb inhibited the iC3b binding site of CR3 (despite its localization on the alpha-chain) and in accordance it inhibited the binding of lymphocytes to the opsonized target also. The IB4 did not affect this site and in accordance it inhibited only partially the binding of effectors to the C3 fragment carrying Raji, nevertheless it inhibited their lysis. This result indicates that the iC3b-CR3 bridge is insufficient for triggering the lysis in absence of the contact through the adhesion molecules.  相似文献   

3.
CD2 is a differentiation marker present on T cells and NK cells. Cytotoxic T lymphocytes (CTL) can be activated by antibodies directed against the CD3/T-cell receptor complex and CD2 structures; however, the role of CD2 in regulation of CD3- large granular lymphocyte (LGL) functions has only recently been studied. Anti-CD2 monoclonal antibodies (mAbs) may be either augmenting or inhibitory and T-cell activation via the CD2 molecule occurs only when mAb binds defined combinations of the CD2 epitopes. Since LGL can be activated by a single stimulus (e.g., IL-2) to proliferate, produce IFN gamma, and increase their cytolytic potential, these functions were chosen to examine the effects of the anti-CD2 mAb and its combinations. Anti-CD2 mAb (D66, GT2, and X11-1) were incubated with LGL for various times in the absence or presence of IL2 and IFN gamma production was monitored. Single anti-CD2 mAb treatment demonstrated minimal augmentation of IFN gamma production. However, combinations of anti-CD2 (9.6) and the other anti-CD2 mAb resulted in a significant, synergistic enhancement of the IFN gamma production. Anti-CD2 mAb treatment appeared to inhibit production generated by optimal doses of IL-2 (1,000 U/ml). The effect of anti-CD2 mAb on IFN gamma production parallel their effects on LGL NK and LAK activity. These data suggested that mAb against the CD2 molecule were important in regulating LGL functions in the absence of a functional CD3 receptor in LGL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

5.
We have shown that intercellular adhesion molecule-1 (ICAM-1) (CD54) positive cells are mainly responsible for the natural cytotoxic function of human blood lymphocytes. The evidences were the inhibition of cytotoxicity by anti-ICAM-1 (LB-2) monoclonal antibodies (mAb) and the loss of lytic activity after removal of the ICAM-1+ cells. In addition, the cytotoxic potential of the separated ICAM-1- lymphocyte population after activation appeared in parallel with the expression of this molecule. The ICAM-1+ lymphocytes lysed both LFA-1 (CD11a/CD18 or Leu-CAMa) positive and negative cell lines, and pretreatment of the effectors with the LB-2 mAb also inhibited the lysis of LFA-1- targets. The results point to a yet unrecognized role of ICAM-1 on the lymphocytes. Kinetics experiments suggested that pretreatment of lymphocytes with alpha-ICAM-1 (LB-2) mAb did not inhibit the promptly established lytic interactions but influenced later events, recycling and/or recruitment of effectors. It is possible that the cytotoxic potential is regulated by contacts between the members of the lymphocyte population and that these events occur via their ICAM-1 and LFA-1. Exposure of lymphocytes to NK-sensitive targets for 16 hr elevated their cytotoxic potential. The function of activated lymphocytes was not inhibited by the LB-2 mAb.  相似文献   

6.
mAb 60.3 and IB4 to CD18, the common beta-subunit of the human leukocytic cell adhesion molecule family, efficiently inhibit syncytium formation induced by the interaction of HIV type 1 (HIV-1)-infected monocytoid cells and CD4+ T cells. The antibodies also interfere with cellfree HIV-1 infection of U-937 clone 16 cells. Virus-induced aggregation of these cells and the subsequent syncytia formation leading to massive cell death are efficiently blocked, and the number of infected cells remains at a very low level, 2 to 5%, for the entire culture period. However, anti-CD18 mAb do not inhibit binding of the viral envelope glycoprotein gp120 to the cell surface receptor CD4. The results indicate participation of CD18, or of the protein complex CD11a-c/CD18, in addition to CD4, in the infection and cytopathic effect of HIV-1. They also suggest that intercellular adhesion contributes to virus transmission from cell to cell and may be an important mechanism for virus spreading.  相似文献   

7.
The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.  相似文献   

8.
Activation of cloned human natural killer cells via Fc gamma RIII   总被引:5,自引:0,他引:5  
The Fc gamma RIII (CD16) Ag on human NK cells involved in antibody-dependent cellular cytotoxicity has been demonstrated to be an important activation structure. The present studies were carried out to further characterize the functional role of the CD16 Ag and the mechanisms whereby cytotoxicity is activated by using human NK clones. In phenotypic studies Fc gamma RIII was found to be expressed heterogeneously on various human cloned NK cells. Expression on CD3- and CD3+ clones varied with the donor and mAb used for detection. Functional data demonstrated that cytotoxicity against NK-resistant target cells can be induced in CD3-CD16+ NK clones and CD3+CD16+ clones with NK activity when various CD16 mAb were used. CD16 antibodies but not reactive isotype control antibodies induced cytotoxicity. In contrast to complete CD16 antibodies F(ab')2 fragments were not able to activate the cytotoxic mechanism. Both an antibody against FcR on the target cell (Fc gamma RII) and a CD11a antibody blocked induction of cytotoxicity. These results suggest that three steps are critical for activation of CD16+ cells via Fc gamma RIII: 1) specific binding of CD16 antibodies to Fc gamma RIII on effector cells irrespective of the epitope recognized; 2) cross-linking of effector cell CD16 Ag through binding of the Fc site of CD16 antibodies via corresponding FcR on the target cell membrane; and 3) interaction of CD11a/18 molecules with the target cell membrane.  相似文献   

9.
Treatment of PBL or Percoll-isolated LGL with anti-transferrin antibodies plus complement reduced their natural killing activity against K-562 cells between 30 and 70%. The same antibodies inhibited natural cytotoxicity when added directly to the assay. Similar depletion or inhibition of NK cytotoxicity was observed when using HeLa cells as targets. The decrease or inhibition by transferrin antibodies was less marked when IFN-treated PBL or LGL as effector cells were used. The inhibition of anti-transferrin antibodies seems to be located at the level of the effector cell population. When PBL but not target K-562 cells were pretreated with anti-transferrin antibodies and were washed before use in the assay, cytotoxicity was decreased by 50%. In addition, about 80% of the LGL positively selected on anti-transferrin plates stained with Leu-11. Furthermore, no reduction by anti-transferrin antibodies plus complement treatment of PBL or LGL, or inhibition by antibodies alone, was observed when the cells were tested against HSV-1-infected cells. Membrane extracts from LGL inhibited NK cytotoxicity against K-562 or HeLa cells. Moreover, the inhibitory component of this extract was removed by anti-transferrin IgG but not by control IgG. These results are in agreement with the recent hypothesis that NK cells recognize the transferrin receptor in tumor target cells, because both the transferrin receptor and anti-transferrin antibodies may share a similar structure that interacts with the NK cells.  相似文献   

10.
In an attempt to identify the target recognition molecule(s) involved in the interaction between CD3- large granular lymphocyte (LGL) and a tumor cell target, monoclonal antibodies (mAb) to NK-susceptible K562 tumor cell membrane glycoproteins were developed. After screening by ELISA for reactivity to K562 membrane glycoproteins, two monoclonal antibodies were identified (mAb 35 and mAb 36). One of the monoclonal antibodies (mAb 36) was found to inhibit conjugation between LGL and K562 target cells and also to inhibit lysis of K562 by LGL. Upon further testing, mAb 36 also inhibited the binding between LGL and other NK-susceptible target cells, e.g., Daudi and Molt 4. In contrast, mAb 35, even though binding to K562, did not inhibit the binding of LGL to tumor targets and therefore was used as an isotype control. When mAb 36 was utilized as an affinity matrix, bound proteins specifically inhibited CD3- LGL-K562 conjugation. Experiments involving tunicamycin treatment of tumor target cells demonstrated that mAb 36 recognized a carbohydrate moiety rather than the protein core. Therefore, these data suggested that the target cell recognition molecule which is recognized by mAb 36 appears to be a membrane carbohydrate-associated molecule.  相似文献   

11.
The T11 (CD2) antigen has been found to be an alternate pathway for antigen-independent activation of resting T cells. T11 triggering also results in activation of NK cells and enhancement of their cytolytic function. The present studies were carried out to further define the mechanisms whereby cytotoxicity is enhanced after T11 activation. A series of clonal human NK cell lines were analyzed after incubation with monoclonal anti-T112 and anti-T113 antibodies specific for different epitopes of the CD2 protein. Anti-T112/3 triggering resulted in increased cytotoxicity against a variety of target cells. Similar results were obtained with F(ab')2 fragments of anti-T112/3, indicating that this effect was not mediated through binding of FcR. The induction of cytotoxicity was found to be associated with increased formation of effector cell-target cell conjugates and with release of secretory granule-localized 35S-labeled proteoglycans. Both enhanced conjugate formation and cytotoxicity could be blocked by anti-lymphocyte function-associated antigen (LFA-1) mAb. Ultrastructural analysis of NK cells after T11 activation demonstrated increased adherence of effector cells to targets and other NK cells as well as a directional reorientation of cytoplasm and intracellular granules toward the area of contact between cells. Discharge of granules occurred into pockets bounded by closely apposed plasma membranes. In the presence of anti-LFA-1 and anti-T112/3, the close apposition and formation of pockets between effector cells and target cells did not occur but the cells exocytosed their intracellular granules. T11 activation of NK cloned cells also resulted in the formation of the homotypic conjugates and autocytotoxicity. As seen with resistant allogeneic targets, autocytotoxicity was mediated by F(ab')2 fragments of T112/3 antibodies and could be blocked by anti-LFA-1 antibody. Ultrastructural analysis of NK cloned cells after T11 activation confirmed the presence of homotypic conjugates with reorientation of effector cells toward one another and discharge of cytolytic granules into pockets formed between NK cloned cells. Taken together, these results indicate that T11-induced cytolytic function of NK cells is, in part, mediated through increased binding of effector cells and targets and that enhanced conjugate formation is at least in part mediated by the LFA-1 antigen. In addition, T11 activation results in the triggering of the cytolytic mechanism of NK cells and the exocytosis of cytolytic granules and their constituents.  相似文献   

12.
The effects of IL-6 and IL-2 on highly purified, human peripheral blood large granular lymphocytes (LGL) were investigated and compared. IL-6 enhanced LGL NK activity in a dose-dependent manner against K562, however IL-2 was a more potent stimulus of LGL NK function. Neither IL-2 nor IL-6 increased LGL cytotoxic potential in a parallel estimation of heteroconjugated antibody (anti-CD16 x anti-nitrophenyl mAb)-dependent cytotoxicity against nitrophenyl-modified YAC. Unlike IL-2, IL-6 did not significantly induce LGL lymphokine-activated killer activity, LGL proliferation, or LGL lymphokine production. In particular, IL-6 did not stimulate detectable LGL IL-2 production or IL-2R modulation, and mAb to the p75 IL-2R had no effect on IL-6 induction of LGL NK activity. Therefore, in the absence of T cells, IL-6 provided an IL-2-independent signal to LGL that resulted in augmentation of their NK activity without stimulating their proliferation or other LGL functions.  相似文献   

13.
The role of beta1 (CD29) integrins in natural killer (NK) cell-target cell conjugation and cytotoxicity has not been clearly established. Ligation of beta1 integrins in NK cells can modulate the lytic capacity in both a positive and a negative manner; however, the contribution of the beta1 integrins present on target cells remains to be evaluated. Here, we analyzed the effect of beta1 integrins expressed by potential tumor target cells on conjugation and cytotoxicity. Using normalized flow cytometry binding assays, we demonstrated that the pretreatment of MOLT-4, K562, U-937 and HL-60 human leukemia target cell lines with selected anti-beta1 monoclonal antibodies (mAb) increased conjugation to human NK cell line NKL as well as to purified NK cells. Only mAb recognizing residues 207-218 of the beta1 subunit and functionally involved in the induction of homotypic adhesion (functional epitope A1) increased conjugation of all the target cells. Moreover, mAb to adhesion molecules different from beta1 but also inducers of homotypic adhesion of the target cells, i.e. CD43 and CD50 (ICAM-3), failed to increase conjugation to NKL cells. Cytotoxicity assays demonstrated that lysis of NK-sensitive target cells (MOLT-4) also increased after pretreatment with anti-beta1 epitope A1 mAb. Importantly, pretreatment of NK-resistant target cells (U-937 and HL-60) with anti-beta1 mAb was not able to outweigh the cytotoxic inhibitory mechanisms controlled by HLA class I molecules. However, simultaneous masking of HLA class I molecules with mAb and pretreatment with anti-beta1 mAb rendered NK-resistant cells susceptible to lysis, as predicted by the missing self hypothesis. Triggering of tumor target cells through beta1 integrins may thus play a role in conjugation to NK cells as well as in co-stimulation of cell-mediated cytotoxicity.  相似文献   

14.
Flow cytometry was used to investigate two functional parameters of human natural-killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC): (i) the frequency of NK cells which formed conjugates (NKC) with autologous monoclonal antibody (mAb)-coated lymphocyte target cells, a measure of the avidity of CD16-dependent cell-cell adhesion, and (ii) the rise in the intracellular concentration of ionized calcium ([Ca2+]i) elicited in NKC by contact with target cells, a measure of CD16-dependent NK cell activation. For each of four rat IgG2b mAb directed against target cell antigens CDw52, CD5, CD45, and class I HLA, there existed quantitatively similar relationships between ADCC and rise in NKC[Ca2+]i but significant inter-mAb differences with respect to the ADCC vs the NKC frequency relationship. Cytolytic efficiencies of mAb appeared to be determined at the level of the NK cell, dependent upon CD16 and LFA-1, but restricted with respect to quantitative levels of NKC[Ca2+]i. In concert with this notion, targets coated with an IgG1 isotype-switch variant alpha CDw52 mAb promoted significant conjugate formation but failed to elicit a rise in NKC[Ca2+]i or ADCC. Thus, Fc regions of antibodies make contacts with NK cell CD16 which may strengthen cell-cell adhesion without eliciting an activation stimulus, a finding which supports a complexity of CD16 functional regulation of probable significance in the clinical consequences of antibody responses or therapeutic mAb manipulations.  相似文献   

15.
Human large granular lymphocytes with the NK cell phenotype (CD16+ or CD56+CD3-) were greatly enriched among the cells which migrated spontaneously through untreated or albumin-coated, 3-microns pore size polycarbonate filters for 1 to 8 h. Three days of rIL-2 treatment (300 IU/ml) and 3 to 5 wk of rIL-2 treatment (100 IU/ml) generated a 2.7 +/- 0.9-fold and 5.6 +/- 0.8-fold increase in cell migration, respectively. The adhesion and subsequent migration of freshly isolated NK cells was mainly mediated by CD11b/CD18, because migration could be inhibited by 80 +/- 8% anti-CD11b (Mac-1) antibodies but not with antibodies against CD11a (LFA-1) or CD11c (p150,95), the other alpha-chains of the beta 2-integrins. After rIL-2 activation, however, CD11a/CD18 was the major receptor utilized in migration, inasmuch as anti-CD11a antibody caused a 69 +/- 8% reduction in the number of migrated cells. Anti-CD11b antibody decreased migration by 43 +/- 12%, and together these antibodies inhibited migration by 82 +/- 7%. Anti-CD11a alone did not have any effect on adhesion, but CD11a/CD18 cooperated in the adhesion because anti-CD11b decreased adhesion by 40 +/- 11% and together these antibodies inhibited adhesion by 74 +/- 6%. The ability of large granular lymphocytes to rapidly utilize beta 2-integrins and unidentified ubiquitous ligands for binding and migration may be significant for their capacity to function in the first line of immune defense under highly variable conditions.  相似文献   

16.
We have examined the functional property of murine CD2 as an intercellular adhesion molecule by using five anti-murine CD2 mAb which were classified into two groups according to their mutual competition in binding to cell surface CD2. Hamster fibroblasts transfected with murine CD2 cDNA exhibited increased conjugate formation with a murine mastocytoma P815 which expresses the putative murine LFA-3 mRNA detected by cross-hybridization with human LFA-3 cDNA under conditions of low stringency. This increase in conjugate formation was abrogated by both groups of anti-CD2 mAb, although some differences in the extent of inhibition were observed at lower concentrations of the mAb. We then examined the involvement of CD2 in several murine T cell responses by using these mAb to abrogate CD2-mediated cellular interactions. Anti-CD2 mAb significantly inhibited mitogenic T cell responses induced by suboptimal doses of Con A and PHA. In the allogenic MLR response and in the Ag response of two KLH/I-Ak-specific Th cell clones, the inhibitory effect of anti-CD2 mAb was also greatest under suboptimal conditions, i.e., with lesser doses of the Ag. These results indicate that the contribution of CD2 as an accessory molecule is variable, depending on the Ag dose used for stimulation, and they suggest that CD2 is involved in the Ag response of murine T cells under the physiologic conditions where only a limited amount of Ag is available. We next examined the contribution of CD2 to MHC-restricted cytotoxicity by CTL and to MHC-unrestricted cytotoxicity by NK and lymphokine-activated killer cells. Only a marginal inhibition by anti-CD2 mAb alone was observed. Anti-lymphocyte function-associated Ag (LFA)-1 mAb alone exhibited greater inhibitory effects than anti-CD2 mAb in all of the cases tested. In most cases, however, substantial levels of cytotoxicity remained, even in the presence of both anti-CD2 and anti-LFA-1 mAb. These results indicate a minor contribution of CD2, as compared with LFA-1, to cytotoxicity by murine CTL, NK cells, and lymphokine-activated killer cells, and they reveal the presence of undefined cellular interaction pathways other than those mediated by CD2 and LFA-1.  相似文献   

17.
We studied the mechanisms whereby human T cells and NK cells are activated and directed to lyse tumor targets through the CD2 (T11/E-rosette) Ag. Using two cloned NK lines, we showed that these cells, as had previously been shown for T cells, could be directed to lyse an "NK-resistant" tumor target in the presence of antibody heterodimers. These heterodimers consisted of a (mAb) to CD2 (anti-T11(2) or anti-T11(3] linked to a mAb recognizing the tumor cell (J5, anti-CALLA). However, distinct differences between NK cells and T cells were observed with regard to the requirements for such directed lysis: first, only one epitope of CD2 on NK cells (either T11(2) or T11(3] needed to be recognized by the antibody heterodimer in order for directed lysis to occur, whereas for T cells both T11(2) and T11(3) epitopes had to be recognized. Second, in confirmation of previous data with monomeric anti-T11(2) or anti-T11(3) antibody, heterodimers constructed with these reagents enhanced conjugate formation between NK cells and tumor targets, whereas no such enhancement was seen with T cells. All types of heterodimer directed lysis were dependent on the adhesion molecule LFA-1, as an anti-LFA-1 antibody-blocked lysis. Third, whereas in T cells lysis mediated through CD2 appeared to be regulated by CD3 but not vice versa, all types of lysis by NK cells appeared to be regulated through CD2. Finally we showed that F(ab')2 fragments of the anti-T11(2) and anti-T11(3) antibodies could activate NK cells, but were unable to activate T cells either as cloned cytolytic lines, or in populations of PBL. The implications of our findings with regard to the role of CD2 in the activation of cytolytic cells is discussed.  相似文献   

18.
NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.  相似文献   

19.
Neutrophil (PMN) migration in the systemic and pulmonary circulation of rabbits was compared by using different inflammatory stimuli to determine the role of the leukocyte adhesion complex, CD11/CD18, in each of these vascular beds. The adhesion complex was blocked by administering the anti-CD18 mAb 60.3. The data show that mAb 60.3 blocks PMN emigration into inflammatory foci in the abdominal wall produced by implanting sponges containing either hydrochloric acid, Streptococcus pneumoniae, Escherichia coli endotoxin, or PMA. mAb 60.3 also inhibited PMN emigration in response to peritoneal instillation of S. pneumoniae. The effect of mAb 60.3 on PMN emigration in the lungs varied depending upon the stimulus. PMN failed to migrate into the PMA-induced pneumonia; however, mAb 60.3 pretreatment only partially inhibited endotoxin-induced pneumonia and did not inhibit S. pneumoniae or hydrochloric acid-induced pneumonias. PMN lavaged from the alveolar spaces in the Streptococcal pneumonia had similar quantities of mAb 60.3 bound to their surfaces as the circulating PMN. We conclude that the CD11/CD18 complex mediates PMN adherence in the systemic circulation. However, PMN adherence in the pulmonary circulation may occur by either CD18-dependent or -independent mechanisms that are specific to the inciting stimulus.  相似文献   

20.
NK cells and certain CTL can recognize and lyse targets without restriction by the MHC. NK cells do not express CD3/TCR complexes and the membrane receptors participating in MHC-unrestricted cytotoxicity are largely unknown. We demonstrate that YT2C2, a human NK leukemia cell line, expresses the CD28 differentiation Ag and can spontaneously lyse both murine and human cell lines expressing B7, a B cell- activation Ag that is a ligand for CD28. The participation of CD28/B7 interactions in MHC-unrestricted cytotoxicity mediated by YT2C2 cells was demonstrated by correlation of target sensitivity with levels of B7 expression, inhibition of cytotoxicity by anti-CD28 or anti-B7 mAb, and by making both murine and human cell lines susceptible to YT2C2-mediated lysis by genetic transfection with expression vectors containing B7 cDNA. However, CD28/B7 interactions alone were insufficient to initiate cytotoxicity. mAb inhibition experiments and selection of CD54- (intercellular adhesion molecule-1) deficient B cell targets indicated that CD11a/18 (lymphocyte function-associated Ag-1) also cooperated in CD28/B7-dependent cytotoxicity. The requirement for both CD28/B7 and lymphocyte function-associated Ag-1/intercellular adhesion molecule-1 interactions in YT2C2-mediated MHC-unrestricted cytotoxicity was confirmed by demonstrating that efficient lysis of murine L cells required cotransfection with both B7 and intercellular adhesion molecule-1. These findings support the concept that MHC-unrestricted cytotoxicity may not be due to a unique receptor, but may result from interactions between an appropriate array of "adhesion" molecules with their ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号