首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mean concentrations of luteinizing hormone (LH) increase during the follicular phase of the estrous cycle in cows. The working hypotheses in the present study were (1) that increasing concentrations of 17 beta-estradiol (E2) during the follicular phase of the estrous cycle cause an increase in mean concentration of LH by increasing amplitude of pulses of LH, and (2) that increasing E2 concentrations during this stage of the estrous cycle decrease frequency of pulses of LH in bovine females. Day of estrus was synchronized in seventeen mature cows. Treatments were initiated on Day 16 of the experimental estrous cycle (Day 0 = estrus). At Hour 0 (on Day 16), 4 cows were lutectomized. Lutectomy of these cows (EE; n = 4) allowed for endogenous secretion of E2. The remaining cows were ovariectomized at Hour 0 and were assigned to one of three E2 treatments: luteal phase E2 (LE, n = 5), increasing then decreasing E2 (DE, n = 5), and no E2 (NE, n = 3). Cows in the group that received LE were administered one E2 implant at Hour 0, which provided low circulating concentrations of E2 similar to those observed during the luteal phase of the estrous cycle. Cows in the group that received DE were administered one E2 implant at Hour 0, and additional implants were administered at 8-h intervals through Hour 40; then, two implants were removed at Hours 48 and 56, and one implant was removed at Hour 64.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of fasting between Days 8 and 16 of the estrous cycle on plasma concentrations of luteinizing hormone (LH), progesterone, cortisol, glucose and insulin were determined in 4 fasted and 4 control heifers during an estrous cycle of fasting and in the subsequent cycle after fasting. Cortisol levels were unaffected by fasting. Concentrations of insulin and glucose, however, were decreased (p less than 0.05) by 12 and 36 h, respectively, after fasting was begun and did not return to control values until 12 h (insulin) and 4 to 7 days (glucose) after fasting ended. Concentrations of progesterone were greater (p less than 0.05) in fasted than in control heifers from Day 10 to 15 of the estrous cycle during fasting, while LH levels were lower (p less than 0.01) in fasted than in control heifers during the last 24 h of fasting. Concentrations of LH increased (p less than 0.01) abruptly in fasted heifers in the first 4 h after they were refed on Day 16 of the fasted cycle. Concentrations (means +/- SEM) of LH also were greater (p less than 0.05) in fasted (11.2 +/- 2.6 ng/ml) than in control (4.7 +/- 1.2 ng/ml) heifers during estrus of the cycle after fasting; this elevated LH was preceded by a rebound response in insulin levels in the fasted-refed heifers, with insulin increasing from 176 +/- 35 pg/ml to 1302 +/- 280 pg/ml between refeeding and estrus of the cycle after fasting. Concentrations of LH, glucose and insulin were similar in both groups after Day 2 of the postfasting cycle. Concentrations of progesterone in two fasted heifers and controls were similar during the cycle after fasting, whereas concentrations in the other fasted heifers were less than 1 ng/ml until Day 10, indicating delayed ovulation and (or) reduced luteal function. Thus, aberrant pituitary and luteal functions in fasted heifers were associated with concurrent fasting-induced changes in insulin and glucose metabolism.  相似文献   

3.
The response of serum luteinizing hormone (LH) to naloxone, an opiate antagonist, and gonadotropin-releasing hormone (GnRH) was measured in cows in late pregnancy to assess opioid inhibition of LH. Blood samples were collected at 15-min intervals for 7 h. In a Latin Square arrangement, each cow (n = 6) received naloxone (0, 0.5, and 1.0 mg/kg BW, i.v.; 2 cows each) at Hour 2 on 3 consecutive days (9 +/- 2 days prepartum). GnRH (7 ng/kg body weight, i.v.) was administered at Hour 5 to all cows on each day. Mean serum LH concentrations (x +/- SE) before naloxone injection were similar (0.4 +/- 0.1 ng/ml), with no serum LH pulses observed during the experiment. Mean serum LH concentrations post-naloxone were similar (0.4 +/- 0.1 ng/ml) to concentrations pre-naloxone. Mean serum LH concentrations increased (p less than 0.05) following GnRH administration (7 ng/kg) and did not differ among cows receiving different dosages of naloxone (0 mg/kg, 1.44 +/- 0.20; 0.5 mg/kg, 1.0 +/- 0.1; 1.0 mg/kg, 0.9 +/- 0.1 ng/ml). In Experiment 2, LH response to naloxone and GnRH was measured in 12 ovariectomized cows on Day 19 of estrogen and progesterone treatment (5 micrograms/kg BW estrogen: 0.2 mg/kg BW progesterone) and on Days 7 and 14 after steroid treatment. On Day 19, naloxone failed to increase serum LH concentrations (Pre: 0.4 +/- 0.1; Post: 0.4 +/- 0.1 ng/ml) after 0, 0.5, or 1.0 mg/kg BW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Whisnant CS  Burns PJ 《Theriogenology》2002,58(6):1229-1235
Two trials were designed to test whether a single treatment with a microsphere formulation of progesterone (P) could simulate the luteal phase of the estrous cycle and lead to estrus and subsequent luteal development. The first experiment was to characterize the pattern of serum P concentrations and estrus in cows treated with a microsphere formulation (P + E) that contained 625 mg P and 50 mg estradiol (E). Four cows with palpable corpora lutea were treated with 25 mg prostaglandin F2 m. Each cow was given P + E (i.m.) 12 h later. Tail vein blood samples were taken on Days 1 and 2 following P + E treatment and then three times weekly for 24 days. Serum P increased from 0.8 +/- 0.1 ng/ml at P + E treatment to 4.7 +/- 0.6 ng/ml on Day 1, declined gradually to 4.1 +/- 0.3 ng/ml on Day 7 and then declined more rapidly to 0.6 +/- 0.1 ng/ml on Day 13. Treated cows showed estrus 16.25 +/- 0.7 days after P + E treatment. Thereafter, serum P increased beginning on Day 20 after P + E treatment, as expected following estrus. In Experiment 2, Angus and Simmental heifers (10.5-11.5 months of age) were administered i.m. either the vehicle (controls), E (50 mg), P (625 mg) or P + E (n = 13 per group). While treatment with E resulted in behavioral estrus (1-2 days after treatment) in each treated heifer, it did not (P > 0.5) initiate estrous cycles as indicated by subsequent increased serum P. In contrast, the P and P + E treatments increased (P < 0.05) the proportion (11/13) of heifers that showed estrus by 21 days after treatment followed by elevated serum P. We conclude that the microsphere formulation of P simulated the pattern of serum P concentrations during the luteal phase of the estrous cycle and initiated estrous cycles in peripubertal heifers with or without E.  相似文献   

5.
Two experiments were conducted to study the in vitro effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2), and luteinizing hormone (LH) on oxytocin (OT) release from bovine luteal tissue. Luteal concentration of OT at different stages of the estrous cycle was also determined. In Experiment 1, sixteen beef heifers were assigned randomly in equal numbers (N = 4) to be killed on Days 4, 8, 12, and 16 of the estrous cycle (Day 0 = day of estrus). Corpora lutea were collected, an aliquot of each was removed for determination of initial OT concentration, and the remainder was sliced and incubated with vehicle (control) or with PGF2 alpha (10 ng/ml), PGE2 (10 ng/ml), or LH (5 ng/ml). Luteal tissue from heifers on Day 4 was sufficient only for determination of initial OT levels. Luteal OT concentrations (ng/g) increased from 414 +/- 84 on Day 4 to 2019 +/- 330 on Day 8 and then declined to 589 +/- 101 on Day 12 and 81 +/- 5 on Day 16. Prostaglandin F2 alpha induced a significant in vitro release of luteal OT (ng.g-1.2h-1) on Day 8 (2257 +/- 167 vs. control 1702 +/- 126) but not on Days 12 or 16 of the cycle. Prostaglandin E2 and LH did not affect OT release at any stage of the cycle studied. In Experiment 2, six heifers were used to investigate the in vitro dose-response relationship of 10, 20, and 40 ng PGF2 alpha/ml of medium on OT release from Day 8 luteal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Thirty-two lactating Holstein cows were assigned to 1 of 4 groups in a randomized block design using a 2 X 2 factorial arrangement of treatments. Recombinant bovine growth hormone (rbSt; 25 mg/day) or placebo was administered beginning at Day 35 or 70 postpartum. All cows began treatment approximately 3 days post-estrus. Blood samples were collected at least once daily for a 70-day period to determine the concentration of progesterone and the duration of the luteal and follicular phases. During estrous cycles 1 and 3, frequent blood samples were taken (every 10 min for 8 h) 24 and 60 h after the onset of luteal regression. These samples were assayed for luteinizing hormone (LH), and samples coincident with the second LH pulse detected were assayed for estradiol. Ultrasonography was used to determine the size of the largest ovarian follicle from Day 17 until ovulation in estrous cycles 1 and 3. Luteal life span, length of the follicular phase, and diameter of the largest follicle were not affected by treatment with rbSt. Administration of rbSt increased the concentration of progesterone in plasma during the first two luteal phases (p less than 0.01). Progesterone was elevated during the mid-luteal phase of cycle 3 in rbSt-treated cows that began treatment about Day 35 postpartum but not in cows that began treatment on Day 70 postpartum (Treatment X Stage X Day, p less than 0.01). During the first follicular phase studied, LH pulse frequency was higher (p = 0.06) in rbSt-treated cows than in cows receiving the placebo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

8.
To determine whether luteinizing hormone (LH) secretion during the first estrous cycle postpartum is characterized by pulsatile release, circulating LH concentrations were measured in 8 postpartum mares, 4 of which had been treated with 150 mg progesterone and 10 mg estradiol daily for 20 days after foaling to delay ovulation. Blood samples were collected every 15 min for 8 h on 4 occasions: 3 times during the follicular phase (Days 2-4, 5-7, and 8-11 after either foaling or end of steroid treatment), and once during the luteal phase (Days 5-8 after ovulation). Ovulation occurred in 4 mares 13.2 +/- 0.6 days postpartum and in 3 of 4 mares 12.0 +/- 1.1 days post-treatment. Before ovulation, low-amplitude LH pulses (approximately 1 ng/ml) were observed in 3 mares; such LH pulses occurred irregularly (1-2/8 h) and were unrelated to mean circulating LH levels, which gradually increased from less than 1 ng/ml at foaling or end of steroid treatment to maximum levels (12.3 ng/ml) within 48 h after ovulation. In contrast, 1-3 high-amplitude LH pulses (3.7 +/- 0.7 ng/ml) were observed in 6 of 7 mares during an 8-h period of the luteal phase. The results suggest that in postpartum mares LH release is pulsatile during the luteal phase of the estrous cycle, whereas before ovulation LH pulses cannot be readily identified.  相似文献   

9.
W D Currie  N C Rawlings 《Life sciences》1987,41(10):1207-1214
Suffolk x whiteface ewes were infused with 0.5 mg/kg/hr naloxone hydrochloride (NAL) for 6 hrs during the early, mid and late luteal and early follicular phases of the estrous cycle. Basal serum luteinizing hormone (LH) concentration was increased by NAL during each trial in the luteal phase and LH pulse amplitude was proportionately increased by 158%, 164% and 350% during the early luteal, mid luteal and early follicular phases, respectively. The apparent NAL induced increase (92%) in LH pulse amplitude during the late luteal phase was not significant. NAL only affected LH pulse frequency during the early follicular phase, when it was decreased. Mean serum follicle stimulating hormone (FSH) concentration was not affected by NAL. The results of this study indicate that endogenous opioid peptides (EOPs) may partially mediate the suppressive influence of estradiol-17 beta (E2) on LH pulse amplitude and also the stimulatory effect of E2 on LH pulse frequency in the early follicular phase. The data may suggest that NAL enhances the amplitude of pulses of gonadotropin releasing hormone (GnRH) by counteracting E2 inhibitory effects on LH release at the level of the pituitary. Alternately, some component of E2 feedback may be an EOP mediated component at the level of the hypothalamus.  相似文献   

10.
In ewes during the breeding season, estradiol (E) and progesterone (P) synergistically regulate pulsatile luteinizing hormone (LH) secretion. E primarily inhibits LH pulse amplitude and P inhibits LH pulse frequency. To determine if endogenous opioid peptides (EOP) mediate these negative feedback effects, we administered the long-acting opioid antagonist WIN 44,441-3 (WIN) to intact ewes during the luteal and follicular phases of the estrous cycle and to ovariectomized ewes treated with no steroids, E, P, or E plus P. Steroid levels were maintained at levels seen during the estrous cycle by Silastic implants placed shortly after surgery. WIN increased LH pulse frequency, but not amplitude, in luteal phase ewes. In contrast, during the follicular phase, LH pulse amplitude was increased by WIN and pulse frequency was unchanged. Neither LH pulse frequency nor pulse amplitude was affected by WIN in long-term ovariectomized ewes untreated with steroids. In contrast, WIN slightly increased LH pulse frequency in short-term ovariectomized ewes. WIN also increased LH pulse frequency in ovariectomized ewes treated with P or E plus P. WIN did not affect pulse frequency but did increase LH pulse amplitude in E-treated ewes. These results support the hypothesis that EOP participate in the negative feedback effects of E and P on pulsatile LH secretion during the breeding season and that the inhibitory effects of EOP may persist for some time after ovariectomy.  相似文献   

11.
Fourteen gilts that had displayed one or more estrous cycles of 18-22 days (onset of estrus = Day 0) and four ovariectomized (OVX) gilts were treated with naloxone (NAL), an opiate antagonist, at 1 mg/kg body weight in saline i.v. Intact gilts were treated during either the luteal phase (L, Day 10-11; n = 7), early follicular phase (EF, Day 15-17; n = 3), or late follicular phase (LF, Day 18-19; n = 4) of the estrous cycle. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. Serum luteinizing hormone (LH) concentrations for L gilts averaged 0.65 +/- 0.04 ng/ml during the pretreatment period and increased to an average of 1.3 +/- 0.1 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum prolactin (PRL) concentrations for L gilts averaged 4.8 +/- 0.2 ng/ml during the pretreatment period and increased to an average of 6.3 +/- 0.3 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum PRL concentrations averaged 8.6 +/- 0.7 ng/ml and 7.6 +/- 0.6 ng/ml in EF and LF gilts, respectively, prior to NAL treatment, and decreased (p less than 0.05) to an average of 4.1 +/- 0.2 ng/ml and 5.6 +/- 0.4 ng/ml in EF and LF gilts, respectively, during the fourth h after NAL. Naloxone treatment failed to alter serum LH concentrations in EF, LF, or OVX gilts and PRL concentrations in OVX gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

13.
The response of serum luteinizing hormone (LH) to morphine, naloxone and gonadotropin-releasing hormone (GnRH) in ovariectomized, suckled (n=4) and nonsuckled (n=3) cows was investigated. Six months after ovariectomy and calf removal, the cows were challenged with 1mg, i.v. naloxone/kg body weight and 1 mg i.v. morphine/kg body weight in a crossover design; blood was collected at 15-minute intervals for 7 hours over a 3-day period. To evaluate LH secretion and pituitary responsiveness, 5 mug of GnRH were administered at Hour 6 on Day 1. On Days 2 and 3, naloxone or morphine was administered at Hour 3, followed by GnRH (5 mug/animal) at Hour 6. Mean preinjection LH concentrations (3.6 +/- 0.2 and 4.7 +/- 0.2 ng/ml), LH pulse frequency (0.6 +/- 0.1 and 0.8 +/- 0.1 pulses/hour) and LH pulse amplitude (2.9 +/- 0.5 and 2.9 +/- 0.6 ng/ml) were similar for suckled and nonsuckled cows, respectively. Morphine decreased (P < 0.01) mean serum LH concentrations (pretreatment 4.2 +/- 0.2 vs post-treatment 2.2 +/- 0.2 ng/ml) in both suckled and nonsuckled cows; however, mean serum LH concentrations remained unchanged after naloxone. Nonsuckled cows had a greater (P < 0.001) LH response to GnRH than did suckled cows (area of response curve: 1004 +/- 92 vs 434 +/- 75 arbitrary units). We suggest that opioid receptors are functionally linked to the GnRH secretory system in suckled and nonsuckled cows that had been ovariectomized for a long period of time. However, gonadotropin secretion appears not to be regulated by opioid mechanisms, and suckling inhibits pituitary responsiveness to GnRH in this model.  相似文献   

14.
To understand the causes for poor response to superovulation in mature cows of high genetic potential, endocrine and follicular events during and after superovulation were compared in heifers (<2 yr old) yielding large numbers of embryos and cows (9 to 13 yr old) known to be poor embryo donors. Follicular development was monitored by daily ultrasonography. Blood samples were taken 2 to 3 times a day for the measurements of P4, E2, FSH and LH by RIA. Intensive blood collections at 15-min intervals for 6 h were also performed during preovulatory and luteal phases. The number of embryos produced in the heifers (15.2 +/- 2; mean +/- SEM) and the cows (0.6 +/- 0.4), was similar to the number of ovulatory follicles derived from ultrasonographic observations in the heifers (16.2 +/- 3.7), but not in the cows (7.8 +/- 2.8). Contrary to that observations in heifers, there was no increase in the number of 4- to 5-mm follicles in cows during superovulation. The number of larger follicles (>5 mm) increased during superovulation in both cattle groups, but it was significantly lower in cows than in heifers. During superovulation, the maximal E2 concentration was greater (P < 0.0001) in heifers than in cows. One cow showed delayed luteolysis during superovulation, while another had abnormally high FSH (>10 ng/ml) and LH (>3 ng/ml) concentrations following superovulation. All the cows had a postovulatory FSH rise which was not detected in the heifers. The results showed that attempts to improve superovulatory response in mature genetically valuable cows are hampered by a number of reproductive disorders that are not predictable from the study of the unstimulated cycle.  相似文献   

15.
The aim of the present study was to induce ovarian cysts experimentally in cattle using ACTH and to closely examine the role of LH pulse frequency in ovarian cyst formation. Five regularly cycling Holstein-Friesian heifers (15-18-month-old) were used. Ovaries were scanned daily using an ultrasound scanner with a 7.5 MHz rectal transducer. Daily blood samples were obtained via tail venepuncture for hormone analyses. Additional blood samples (for FSH and LH pulses) were obtained through an indwelling jugular vein catheters every 15 min for 8 h on Days 2 (early luteal phase; ELP), 12 (mid-luteal phase; MLP) and 19 (follicular phase; FP) of control estrous cycle and on alternate days during follicular cyst (FC) formation and persistence. Cysts were induced using subcutaneous injections of ACTH (Cortrosyn) Z; 1 mg) every 12 h for 7 days beginning on Day 15 of the subsequent estrous cycle. Plasma concentrations of progesterone (P4), estradiol-17beta, FSH and LH were determined by double antibody radioimmunoassay while cortisol concentration was determined by enzyme immunoassay (EIA). Ovarian follicular and endocrine dynamics were normal during the control estrous cycles. Ovarian follicular cysts were induced in four of the five heifers. Mean maximum size of cysts was larger (P<0.05) than that of ovulatory follicles (26.78+/-3.65 versus 14.1+/-0.90 mm), respectively. Cortisol levels were increased during ACTH treatment. High concentrations of estradiol and low progesterone were observed after cyst formation. LH pulse frequency was significantly reduced (P<0.05) during cyst formation and persistence compared to ELP (7.5+/-0.75) and FP (6.5+/-0.58), but was not significantly (P=0.23) different from MLP (2.8+/-0.29) pulses. Mean LH pulse amplitude and concentrations were not different. Similarly, the mean pulse frequency, amplitude and concentration of FSH were not different between control study and cystic heifers. These results suggest that the LH pulse frequency observed following ACTH treatment may interact with high estradiol concentration to induce ovarian cyst formation in heifers.  相似文献   

16.
17.
Serum lutinizing hormone (LH) levels in cattle during various reproductive states were measured by radioimmunoassay. A sharp LH peak observed at estrus (22.72 ± 5.68 ng/ml) was about 26 times higher than at other stages of the cycle (0.87 ± 0.06 ng/ml). LH levels during the first 90 days of pregnancy (0.75 ± 0.15 ng/ml) were similar to those of the estrous cycle, except during estrus, while those during the second (0.22 ± 0.07 ng/ml) and third trimesters of pregnancy (0.22 ± 0.08 ng/ml) were significantly lower. Higher levels than those of the cycling cows, except during estrus, were seen in ovariectomized cows (2.21 ± 0.56 ng/ml). Levels of LH in cows with cystic follicles (2.00 ± 0.49 ng/ml) were higher than the levels in the cycle. LH levels in bulls (1.29 ± 0.39 ng/ml) were comparable to that of estrous cows. Serum LH of calves increased with age from 1.00 ± 0.32 ng/ml (less than 30 days of age), to 2.30 ± 0.83 ng/ml (181 to 210 days of age), and the level after 151 days was significantly higher than that of the cyclic cows, except during estrus.  相似文献   

18.
Blood samples were collected every 15 min for 6 h during the follicular (1 day before oestrus), and early (Days +1 to +3), mid- (Days +4 to +8), and full (Days +9 to +14) luteal phases of the oestrous cycle. Serum concentrations of immunoactive LH were measured by radioimmunoassay. The biological activity of serum LH was determined by an in-vitro bioassay that uses LH-induced testosterone production from mouse interstitial cells as an endpoint. Only ovine and bovine LH and hCG had appreciable activity in this bioassay. The temporal pattern of secretion of bioactive LH paralleled the secretory pattern of immunoactive LH at all stages of the ovine oestrous cycle. However, the secretory pattern itself varied regularly through the oestrous cycle. The frequency of secretory excursions of LH was highest during the follicular phase (6.2 +/- 0.9 pulses/6 h) and was progressively reduced through the luteal phase (1.1 +/- 0.1 pulses/6 h during full luteal phase). Conversely, amplitude of secretory excursions of immunoactive LH was low during the follicular phase (0.79 +/- 0.08 ng/ml) and significantly (P less than 0.05) increased during the mid- and full luteal phases (1.49 +/- 0.10 and 2.37 +/- 0.20 ng/ml, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two experiments were conducted to determine whether active immunization against luteinizing hormone (LH) could lead to ovarian cyst development in the cow. In Experiment 1, cyclic beef heifers were randomly assigned to receive bovine LH (bLH) conjugated with ovalbumin (LH-immunized; n=4) or ovalbumin alone (control; n=5). Blood samples were collected at monthly intervals from the LH-immunized heifers to determine antibody titers. Heifers were observed for estrous behavior twice daily. All heifers were slaughtered 4 mo after initial immunization and ovaries examined for follicular status. In Experiment 2, mature dairy cows were immunized with bLH (LH-immunized; n=4) or ovalbumin alone (control; n=3). Weekly blood samples were collected from all cows for 26 wk and ovaries were rectally palpated. Sera from all of the LH-immunized heifers and cows had antibodies to LH. All of the LH-immunized animals stopped cycling 1 mo after immunization. In spite of the fact that serum follicle stimulating hormone levels were unaffected, ovarian cysts could not be found in either the LH-immunized heifers or cows.  相似文献   

20.
Differences in follicular development and circulating hormone concentrations, between lactating cows and nulliparous heifers, that may relate to differences in fertility between the groups, were examined. Multiparous, cyclic, lactating Holstein cows (n=19) and cyclic heifers (n=20) were examined in the winter, during one estrous cycle. The examinations included ultrasound monitoring and daily blood sampling. Distributions of two-wave and three-wave cycles were similar in the two groups: 79 and 21% in cows, 70 and 30% in heifers, respectively. Cycle lengths were shorter by 2.6 days in heifers than in cows, and in two-wave than in three-wave cycles. The ovulatory follicle was smaller in heifers than in cows (13.0+/-0.3 mm versus 16.5+/-0.05 mm). The greater numbers of large follicles in cows than in heifers corresponded well to the higher concentrations of FSH in cows. The duration of dominance of the ovulatory follicle tended to be longer in cows than in heifers. Estradiol concentrations around estrus and the preovulatory LH surge were higher in heifers than in cows (20 versus 9 ng/ml). Progesterone concentrations were higher in heifers than in cows from Day 3 to Day 16 of the cycle. Circulating progesterone did not differ between two-wave and three-wave cycles. The results revealed differences in ovarian follicular dynamics, and in plasma concentrations of steroids and gonadotropins; these may account for the differences in fertility between nulliparous heifers and multiparous lactating cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号