首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variation in Quantum Yield for CO(2) Uptake among C(3) and C(4) Plants   总被引:13,自引:10,他引:3       下载免费PDF全文
The quantum yield for CO2 uptake was measured on a number of C3 and C4 monocot and dicot species. Under normal atmospheric conditions (330 microliters per liter CO2, 21% O2) and a leaf temperature of 30°C, the average quantum yields (moles CO2 per einstein) were as follows: 0.052 for C3 dicots, 0.053 for C3 grasses, 0.053 for NAD-malic enzyme type C4 dicots, 0.060 for NAD-malic enzyme type C4 grasses, 0.064 for phosphoenolpyruvate carboxykinase type C4 grasses, 0.061 for NADP-malic enzyme C4 dicots, and 0.065 for NADP-malic enzyme type C4 grasses. The quantum yield under normal atmospheric conditions was temperature dependent in C3 species, but apparently not in C4 species. Light and temperature conditions during growth appeared not to influence quantum yield. The significance of variation in the quantum yields of C4 plants was discussed in terms of CO2 leakage from the bundle sheath cells and suberization of apoplastic regions of the bundle sheath cells.  相似文献   

2.
The quantum yield for CO2 uptake was measured in C3 and C4 monocot species from several different grassland habitats. When the quantum yield was measured in the presence of 21% O2 and 340 cm3 m-3 CO2, values were very similar in C3 monocots, C3 dicots, and C4 monocots (0.045–0.056 mole CO2 · mole-1 quanta absorbed). In the presence of 2% O2 and 800 cm3 m-3 CO2, enhancements of the quantum yield values occurred for the C3 plants (both monocots and dicots), but not for C4 monocots. A dependence of the quantum yield on leaf temperature was observed in the C3 grass, Agropyron smithii, but not in the C4 grass, Bouteloua gracilis, in 21% O2 and 340 cm3 m-3 CO2. At leaf temperatures between 22–25°C the quantum yield values were approximately equal in the two species.  相似文献   

3.
Long SP  Drake BG 《Plant physiology》1991,96(1):221-226
CO2 concentration was elevated throughout 3 years around stands of the C3 sedge Scirpus olneyi on a tidal marsh of the Chesapeake Bay. The hypothesis that tissues developed in an elevated CO2 atmosphere will show an acclimatory decrease in photosynthetic capacity under light-limiting conditions was examined. The absorbed light quantum yield of CO2 uptake (øabs and the efficiency of photosystem II photochemistry were determined for plants which had developed in open top chambers with CO2 concentrations in air of 680 micromoles per mole, and of 351 micromoles per mole as controls. An Ulbricht sphere cuvette incorporated into an open gas exchange system was used to determine øabs and a portable chlorophyll fluorimeter was used to estimate the photochemical efficiency of photosystem II. When measured in an atmosphere with 10 millimoles per mole O2 to suppress photorespiration, shoots showed a øabs of 0.093 ± 0.003, with no statistically significant difference between shoots grown in elevated or control CO2 concentrations. Efficiency of photosystem II photochemistry was also unchanged by development in an elevated CO2 atmosphere. Shoots grown and measured in 680 micromoles per mole of CO2 in air showed a øabs of 0.078 ± 0.004 compared with 0.065 ± 0.003 for leaves grown and measured in 351 micromoles per mole CO2 in air; a highly significant increase. In accordance with the change in øabs, the light compensation point of photosynthesis decreased from 51 ± 3 to 31 ± 3 micro-moles per square meter per second for stems grown and measured in 351 and 680 micromoles per mole of CO2 in air, respectively. The results suggest that even after 3 years of growth in elevated CO2, there is no evidence of acclimation in capacity for photosynthesis under light-limited conditions which would counteract the stimulation of photosynthetic CO2 uptake otherwise expected through decreased photorespiration.  相似文献   

4.
The quantum yields of photosynthetic O2 evolution were measuredin 15 species of C4 plants belonging to three different decarboxylationtypes (NADP-ME type, NAD-ME type and PEP-CK type) and 5 speciesof C3 plants and evaluated relative to the maximum theoreticalvalue of 0.125 mol oxygen quanta-1. At 25°C and 1% CO2,the quantum yield in C4 plants averaged 0.079 (differences betweensubgroups not significant) which was significantly lower thanthe quantum yield in C3 plants (average of 0.105 for 5 species).This lower quantum yield in C4 plants is thought to reflectthe requirement of energy in the C4 cycle. For the C4 NADP-MEtype plant Z. mays and NAD-ME type plant P. miliaceum, quantumyields were also measured over a range of CO2 levels between1 and 20%. In both species maximum quantum yields were obtainedunder 10% CO2 (0.105 O2 quanta-1 in Z. mays and 0.097 O2 quanta-1in P. miliaceum) indicating that at this CO2 concentration thequantum yields are similar to those obtained in C3 plants underCO2 saturation. The high quantum yield values in C4 plants undervery high CO2 may be accomplished by direct diffusion of atmosphericCO2 to bundle sheath cells, its fixation in the C3 pathway,and feedback inhibition of the C4 cycle by inorganic carbon. (Received June 6, 1995; Accepted August 15, 1995)  相似文献   

5.
Peterson RB 《Plant physiology》1991,97(4):1388-1394
The interactive effects of irradiance and O2 and CO2 levels on the quantum yields of photosystems I and II have been studied under steady-state conditions at 25°C in leaf tissue of tobacco (Nicotiana tabacum). Assessment of radiant energy utilization in photosystem II was based on changes in chlorophyll fluorescence yield excited by a weak measuring beam of modulated red light. Independent estimates of photosystem I quantum yield were based on the light-dark in vivo absorbance change at 830 nanometers, the absorption band of P700+. Normal (i.e. 20.5%, v/v) levels of O2 generally enhanced photosystem II quantum yield relative to that measured under 1.6% O2 as the irradiance approached saturation. Photorespiration is suspected to mediate such positive effects of O2 through increases in the availability of CO2 and recycling of orthophosphate. Conversely, at low intercellular CO2 concentrations, 41.2% O2 was associated with lower photosystem II quantum yield compared with that observed at 20.5% O2. Inhibitory effects of 41.2% O2 may occur in response to negative feedback on photosystem II arising from a build-up in the thylakoid proton gradient during electron transport to O2. Covariation between quantum yields of photosystems I and II was not affected by concentrations of either O2 or CO2. The dependence of quantum yield of electron transport to CO2 measured by gas exchange upon photosystem II quantum yield as determined by fluorescence was unaffected by CO2 concentration.  相似文献   

6.
The effect of leaf temperature, O2 and calculated O2/CO2 solubility ratio in the leaf on the quantum yield of photosynthesis was studied for the C4 species, Zea mays L., and the C3 species, Triticum aestivum L. Over a range of leaf temperatures of 16 to 35° C, the quantum yield of Z. mays was relatively constant and was similar under 1.5 and 21% O2, being ca. 0.059 mol CO2 mol-1 quanta absorbed. Under 1.5% O2 and atmospheric levels of CO2, the quantum yield of T. aestivum was relatively constant (0.083 mol CO2 mol-1 quanta absorbed) at leaf temperatures from 15 to 35° C. Atmospheric levels of O2 (21%) reduced the quantum yield of photosynthesis in T. aestivum and as leaf temperature increased, the quantum yield decreased from 0.062 at 15°C to 0.046 mol CO2 mol-1 quanta absorbed at 35°C. Increasing temperature decreases the solubility of CO2 relatively more than the solubility of O2, resulting in an increased solubility ratio of O2/CO2. Experimentally manipulating the atmospheric levels of O2 or CO2 to maintain a near-constant solubility ratio of O2/CO2 at varying leaf temperatures largely prevented the temperature-dependent decrease in quantum yield in t. aestivum. Thus, the decrease in quantum yield with increasing leaf temperature in C3 species may be largely caused by a temperaturedependent change in the solubility ratio of O2/CO2.J and II=Ku and Edwards, 1977a, b  相似文献   

7.
Quantum Yields of CAM Plants Measured by Photosynthetic O(2) Exchange   总被引:4,自引:4,他引:0  
The quantum yield of photosynthetic O2 exchange was measured in eight species of leaf succulents representative of both malic enzyme type and phosphoenolpyruvate carboxykinase type CAM plants. Measurements were made at 25°C and CO2 saturation using a leaf disc O2 electrode system, either during or after deacidification. The mean quantum yield was 0.095 ± 0.012 (sd) moles O2 per mole quanta, which compared with 0.094 ± 0.006 (sd) moles O2 per mole quanta for spinach leaf discs measured under the same conditions. There were no consistent differences in quantum yield between decarboxylation types or during different phases of CAM metabolism. On the basis of current notions of compartmentation of CAM biochemistry, our observations are interpreted to indicate that CO2 refixation is energetically independent of gluconeogenesis during deacidification.  相似文献   

8.
Two naturally occurring species of the genus Alternanthera, namely A. ficoides and A. tenella, were identified as C3-C4 intermediates based on leaf anatomy, photosynthetic CO2 compensation point (Γ), O2 response of г, light intensity response of г, and the activities of key enzymes of photosynthesis. A. ficoides and A. tenella exhibited a less distinct Kranz-like leaf anatomy with substantial accumulation of starch both in mesophyll and bundle sheath cells. Photosynthetic CO2 compensation points of these two intermediate species at 29°C were much lower than in C3 plants and ranged from 18 to 22 microliters per liter. Although A. ficoides and A. tenella exhibited similar intermediacy in г, the apparent photorespiratory component of O2 inhibition in A. ficoides is lower than in A. tenella. The г progressively decreases from 35 microliters per liter at lowest light intensity to 18 microliters per liter at highest light intensity in A. tenella. It was, however, constant in A. ficoides at 20 to 25 microliters per liter between light intensities measured. The rates of net photosynthesis at 21% O2 and 29°C by A. ficoides and A. tenella were 25 to 28 milligrams CO2 per square decimeter per hour which are intermediate between values obtained for Tridax procumbens and A. pungens, C3 and C4 species, respectively. The activities of key enzymes of C4 photosynthesis, phosphoenolpyruvate carboxylase, pyruvate Pi dikinase, NAD malic enzyme, NADP malic enzyme and phosphoenolpyruvate carboxykinase in the two intermediates, A. ficoides and A. tenella are very low or insignificant. Results indicated that the relatively low apparent photorespiratory component in these two species is presumably the basis for the C3-C4 intermediate photosynthesis.  相似文献   

9.
Plants of Echinochloa crus-galli from Québec and Mississippi were grown under two thermoperiods (28°C/22°C, 21°C/15°C) and two atmospheric CO2 concentrations (350 and 675 microliters per liter) to examine possible differential responses of northern and southern populations of this C4 grass species. Translocation was monitored using radioactive tracing with short-lived 11C. CO2 enrichment induced a decrease in the size of the export pool in plants of both populations. Other parameters did not strongly respond to elevated CO2. Low temperature reduced translocation drastically for plants from Mississippi in normal CO2 concentration, but this reduction was ameliorated at high CO2. Overall, plants from Québec had a higher 11C activity in leaf phloem and a higher percentage of 11C exported, whereas these northern plants had lower turnover time and smaller pool size than plants from the southern population.  相似文献   

10.
Four species of the genus Flaveria, namely F. anomala, F. linearis, F. pubescens, and F. ramosissima, were identified as intermediate C3-C4 plants based on leaf anatomy, photosynthetic CO2 compensation point, O2 inhibition of photosynthesis, and activities of C4 enzymes. F. anomala and F. ramosissima exhibit a distinct Kranz-like leaf anatomy, similar to that of the C4 species F. trinervia, while the other C3-C4 intermediate Flaveria species possess a less differentiated Kranz-like leaf anatomy. Photosynthetic CO2 compensation points of these intermediates at 30°C were very low relative to those of C3 plants, ranging from 7 to 14 microliters per liter. In contrast to C3 plants, net photosynthesis by the intermediates was not sensitive to O2 concentrations below 5% and decreased relatively slowly with increasing O2 concentration. Under similar conditions, the percentage inhibition of photosynthesis by 21% O2 varied from 20% to 25% in the intermediates compared with 28% in Lycopersicon esculentum, a typical C3 species. The inhibition of carboxylation efficiency by 21% O2 varied from 17% for F. ramosissima to 46% for F. anomala and were intermediate between the C4 (2% for F. trinervia) and C3 (53% for L. esculentum) values. The intermediate Flaveria species, especially F. ramosissima, have substantial activities of the C4 enzymes, phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, NADP-malic enzyme, and NADP-malate dehydrogenase, indicating potential for C4 photosynthesis. It appears that these Flaveria species may be true biochemical C3-C4 intermediates.  相似文献   

11.
The effect of 21% O2 and 3% O2 on the CO2 exchange of detached wheat leaves was measured in a closed system with an infrared carbon dioxide analyzer. Temperature was varied between 2° and 43°, CO2 concentration between 0.000% and 0.050% and light intensity between 40 ft-c and 1000 ft-c. In most conditions, the apparent rate of photosynthesis was inhibited in 21% O2 compared to 3% O2. The degree of inhibition increased with increasing temperature and decreasing CO2 concentration. Light intensity did not alter the effect of O2 except at light intensities or CO2 concentrations near the compensation point. At high CO2 concentrations and low temperature, O2 inhibition of apparent photosynthesis was absent. At 3% O2, wheat resembled tropical grasses in possessing a high rate of photosynthesis, a temperature optimum for photosynthesis above 30°, and a CO2 compensation point of less than 0.0005% CO2. The effect of O2 on apparent photosynthesis could be ascribed to a combination of stimulation of CO2 production during photosynthesis, and inhibition of photosynthesis itself.  相似文献   

12.
Leaves of Flaveria brownii exhibited slightly higher amounts of oxygen inhibition of photosynthesis than the C4 species, Flaveria trinervia, but considerably less than the C3 species, Flaveria cronquistii. The photosynthetic responses to intercellular CO2, light and leaf temperature were much more C4-like than C3-like, although 21% oxygen inhibited the photosynthetic rate, depending on conditions, up to 17% of the photosynthesis rate observed in 2% O2. The quantum yield for CO2 uptake in F. brownii was slightly higher than that for the C4 species F. trinervia in 2% O2, but not significantly different in 21% O2. The quantum yield was inhibited 10% in the presence of 21% O2 in F. brownii, yet no significant inhibition was observed in F. trinervia. An inhibition of 27% was observed for the quantum yield of F. cronquistii in the presence of 21% O2. The photosynthetic response to very low intercellular CO2 partial pressures exhibited a unique pattern in F. brownii, with a break in the linear slope observed at intercellular CO2 partial pressure values between 15 and 20 μbar when analyzed in 21% O2. No significant break was observed when analyzed in 2% O2. When taken collectively, the gas-exchange results reported here are consistent with previous biochemical studies that report incomplete intercellular compartmentation of the C3 and C4 enzymes in this species, and suggest that F. brownii is an advanced, C4-like C3-C4 intermediate.  相似文献   

13.
Zelitch I 《Plant physiology》1989,90(4):1457-1464
Plants were obtained with novel O2-resistant photosynthetic characteristics. At low CO2 (250-350 μL CO2 L−1) and 30°C when O2 was increased from 1% to 21% to 42%, the ratio of net CO2 uptake in O2-resistant whole plants or leaf discs compared to wild type increased progressively, and this was not related to stomatal opening. Dihaploid plantlets regenerated from anther culture were initially screened and selected for O2-resistant growth in 42% O2/160 μL CO2 L−1 and 0.18% of the plantlets showed O2-resistant photosynthesis. About 30% of the progeny (6 of 19 plants) of the first selfing of a fertile plant derived from a resistant dihaploid plant had O2-resistant photosynthesis, and after a second selfing this increased to 50% (6 of 12 plants). In 21% O2 and low CO2, net photosynthesis of the resistant plants was about 15% greater on a leaf area basis than wild type. Net photosynthesis was compared in leaf discs at 30 and 38°C in 21% O2, and at the higher temperature O2-resistant plants showed still greater photosynthesis than wild type. The results suggest that the O2-resistant photosynthesis described here is associated with a decreased stoichiometry of CO2 release under conditions of rapid photorespiration. This view was supported by the finding that leaves of O2-resistant plants averaged 40% greater catalase activity than wild type.  相似文献   

14.
The CO2/O2 specificity factor of sucrose gradient purified ribulose 1,5-bisphosphate carboxylase/oxygenase from the C3-C4 intermediate plants Moricandia arvensis (79 ± 1) and Panicum milioides (89 ± 2) was similar to the respective values of the enzyme from the closely related C3 species, Moricandia foetida (80 ± 5) and Panicum laxum (86 ± 2). Thus, the kinetic properties of this bifunctional enzyme do not explain the reduced rates of photorespiration exhibited by either of these intermediate species.  相似文献   

15.
The potential for C4 photosynthesis was investigated in five C3-C4 intermediate species, one C3 species, and one C4 species in the genus Flaveria, using 14CO2 pulse-12CO2 chase techniques and quantum-yield measurements. All five intermediate species were capable of incorporating 14CO2 into the C4 acids malate and aspartate, following an 8-s pulse. The proportion of 14C label in these C4 products ranged from 50–55% to 20–26% in the C3-C4 intermediates F. floridana Johnston and F. linearis Lag. respectively. All of the intermediate species incorporated as much, or more, 14CO2 into aspartate as into malate. Generally, about 5–15% of the initial label in these species appeared as other organic acids. There was variation in the capacity for C4 photosynthesis among the intermediate species based on the apparent rate of conversion of 14C label from the C4 cycle to the C3 cycle. In intermediate species such as F. pubescens Rydb., F. ramosissima Klatt., and F. floridana we observed a substantial decrease in label of C4-cycle products and an increase in percentage label in C3-cycle products during chase periods with 12CO2, although the rate of change was slower than in the C4 species, F. palmeri. In these C3-C4 intermediates both sucrose and fumarate were predominant products after a 20-min chase period. In the C3-C4 intermediates, F. anomala Robinson and f. linearis we observed no significant decrease in the label of C4-cycle products during a 3-min chase period and a slow turnover during a 20-min chase, indicating a lower level of functional integration between the C4 and C3 cycles in these species, relative to the other intermediates. Although F. cronquistii Powell was previously identified as a C3 species, 7–18% of the initial label was in malate+aspartate. However, only 40–50% of this label was in the C-4 position, indicating C4-acid formation as secondary products of photosynthesis in F. cronquistii. In 21% O2, the absorbed quantum yields for CO2 uptake (in mol CO2·[mol quanta]-1) averaged 0.053 in F. cronquistii (C3), 0.051 in F. trinervia (Spreng.) Mohr (C4), 0.052 in F. ramosissima (C3-C4), 0.051 in F. anomala (C3-C4), 0.050 in F. linearis (C3-C4), 0.046 in F. floridana (C3-C4), and 0.044 in F. pubescens (C3-C4). In 2% O2 an enhancement of the quantum yield was observed in all of the C3-C4 intermediate species, ranging from 21% in F. ramosissima to 43% in F. pubescens. In all intermediates the quantum yields in 2% O2 were intermediate in value to the C3 and C4 species, indicating a co-function of the C3 and C4 cycles in CO2 assimilation. The low quantum-yield values for F. pubescens and F. floridana in 21% O2 presumably reflect an ineffcient transfer of carbon from the C4 to the C3 cycle. The response of the quantum yield to four increasing O2 concentrations (2–35%) showed lower levels of O2 inhibition in the C3-C4 intermediate F. ramosissima, relative to the C3 species. This indicates that the co-function of the C3 and C4 cycles in this intermediate species leads to an increased CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase and a concomitant decrease in the competitive inhibition by O2.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate  相似文献   

16.
The effects of gas phase O2 concentration (1%, 20.5%, and 42.0%, v/v) on the quantum yield of net CO2 fixation and fluorescence yield of chlorophyll a are examined in leaf tissue from Nicotiana tabacum at normal levels of CO2 and 25 to 30°C. Detectable decreases in nonphotochemical quenching of absorbed excitation occurred at the higher O2 levels relative to 1% O2 when irradiance was nearly or fully saturating for photosynthesis. Photochemical quenching was increased by high O2 levels only at saturating irradiance. Simultaneous measurements of CO2 and H2O exchange and fluorescence yield permit estimation of partitioning of linear photosynthetic electron transport between net CO2 fixation and O2-dependent, dissipative processes such as photorespiration as a function of leaf internal CO2 concentration. Changes in the in vivo CO2:O2 `specificity factor' (Ksp) with increasing irradiance are examined. The magnitude Ksp was found to decline from a value of 85 at moderate irradiance to 68 at very low light, and to 72 at saturating photon flux rates. The results are discussed in terms of the applicability of the ribulose bisphosphate carboxylase/oxygenase enzyme model to photosynthesis in vivo.  相似文献   

17.
An apparatus to produce continuous gas mixtures for use in measurements of plant gas exchange is described. A wide range of CO2 and water vapor concentrations can be provided and O2 concentration can be varied from 0 to 21%. Changes in the concentrations of the components are accomplished conveniently, rapidly, and independently. With occasional adjustments, CO2 and O2 concentrations can be maintained to within ± 1 μl/l and ± 0.1%, respectively. Dew point of the gas mixture can be maintained to within ± 0.05 C.  相似文献   

18.
An O2 electrode system with a specially designed chamber for `whorl' cell complexes of Chara corallina was used to study the combined effects of inorganic carbon and O2 concentrations on photosynthetic O2 evolution. At pH = 5.5 and 20% O2, cells grown in HCO3 medium (low CO2, pH ≥ 9.0) exhibited a higher affinity for external CO2 (K½(CO2) = 40 ± 6 micromolar) than the cells grown for at least 24 hours in high-CO2 medium (pH = 6.5), (K½(CO2) = 94 ± 16 micromolar). With O2 ≤ 2% in contrast, both types of cells showed a high apparent affinity (K½(CO2) = 50 − 52 micromolar). A Warburg effect was detectable only in the low affinity cells previously cultivated in high-CO2 medium (pH = 6.5). The high-pH, HCO3-grown cells, when exposed to low pH (5.5) conditions, exhibited a response indicating an ability to fix CO2 which exceeded the CO2 externally supplied, and the reverse situation has been observed in high-CO2-grown cells. At pH 8.2, the apparent photosynthetic affinity for external HCO3 (K½[HCO3]) was 0.6 ± 0.2 millimolar, at 20% O2. But under low O2 concentrations (≤2%), surprisingly, an inhibition of net O2 evolution was elicited, which was maximal at low HCO3 concentrations. These results indicate that: (a) photorespiration occurs in this alga and can be revealed by cultivation in high-CO2 medium, (b) Chara cells are able to accumulate CO2 internally by means of a process apparently independent of the plasmalemma HCO3 transport system, (c) molecular oxygen appears to be required for photosynthetic utilization of exogenous HCO3: pseudocyclic electron flow, sustained by O2 photoreduction, may produce the additional ATP needed for the HCO3 transport.  相似文献   

19.
An open system associated with an infrared gas analyzer was employed to study transients in CO2 exchange generated upon darkening preilluminated leaf discs of tobacco (Nicotiana tabacum vars John Williams Broadleaf and Havana Seed). An empirical formula presented previously enabled prediction of the analyzer response under nonsteady state conditions as a function of time and of the leaf CO2 exchange rate. A computer was used to evaluate parameters of the leaf CO2 release rate to provide an estimate of the initial rate of postillumination CO2 evolution and to produce maximal agreement between predicted and observed analyzer responses. In 21% O2, the decline in rate of CO2 evolution upon darkening followed first order kinetics. Initial rates of CO2 evolution following darkening were relatively independent of the prior ambient CO2 concentrations. However, rates of photorespiration expressed as a fraction of net photosynthesis declined rapidly with increasing external CO2 concentration at 21% O2. Under normal atmospheric conditions, photorespiration was 45 to 50% of the net CO2 fixation rate at 32°C and high irradiance. The rapid initial CO2 evolution observed upon darkening at 21% O2 was absent in 3% O2. Rates of photorespiration under normal atmospheric concentrations of CO2 and O2 as measured by the postillumination burst were highly dependent upon temperature (observed activation energy = 30.1 kilocalories per mole). The results are discussed with respect to previously published estimates of photorespiration in C3 leaf tissue.  相似文献   

20.
The sensitivity of photosynthesis to O2 and CO2 was measured in leaves from field grown plants of six species (Phaseolus vulgaris, Capsicum annuum, Lycopersicon esculentum, Scrophularia desertorum, Cardaria draba, and Populus fremontii) from 5°C to 35°C using gas-exchange techniques. In all species but Phaseolus, photosynthesis was insensitive to O2 in normal air below a species dependent temperature. CO2 insensitivity occurred under the same conditions that resulted in O2 insensitivity. A complete loss of O2 sensitivity occurred up to 22°C in Lycopersicon but only up to 6°C in Scrophularia. In Lycopersicon and Populus, O2 and CO2 insensitivity occurred under conditions regularly encountered during the cooler portions of the day. Because O2 insensitivity is an indicator of feedback limited photosynthesis, these results indicate that feedback limitations can play a role in determining the diurnal carbon gain in the field. At higher partial pressures of CO2 the temperature at which O2 insensitivity occurred was higher, indicating that feedback limitations in the field will become more important as the CO2 concentration in the atmosphere increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号