首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured secondary Syrian hamster embryo cells exposed to 0.5 N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) microgram/ml medium exhibited chromatid type of aberrations consisting of gaps, breaks and exchanges. Although no specific chromosome or chromosome segment was preferentially affected, chromosomes belonging to the larger groups tended to more often involved. G-band analysis demonstrated that 80% of the lesions occurred in negative bands, 9% involved the centromere, 3% were on non-banded heterochromatin, and approximately 8% of the lesions could not be definitely categorized by G-band analysis. Whether the lesions occur at positive bands or at the interface between negative and positive bands is difficult to discern by the G-band resolution. The Y chromosome compared to autosomes of similar size rarely had lesions. X chromosome damage was found in both the euchromatic and heterochromatic arms. However, both sex chromosomes, as well as an autosome (E20) which is heterochromatic on its long arm, were not found joined to the chromatids of other chromosomes, further emphasizing that chromosomes with large heterochromatic areas are isolated in terms of chromatid exchange events. The analysis of MNNG induced chromosome damage indicates that the negative bands are the primary site of damage and points of exchange.  相似文献   

2.
N. Kanda 《Chromosoma》1981,84(2):257-263
Selective differential staining of sister chromatids for the facultative heterochromatic X chromosome in the female mouse has been achieved by the combination of two differential staining techniques; one for the heterochromatic X chromosome and the other for sister chromatids. Thermal hypotonic treatment moderately destroyed the chromosome structure except for the heterochromatic X in BrdU labelled metaphase cells, resulting in the selective sister chromatid differentiation of this X with Giemsa stain. This technique enables us to know the exact frequency of the spontaneous sister chromatid exchanges in the heterochromatic X without using 3H-TdR labelling for detecting the late DNA replication. The results indicate that the sister chromatid exchange frequency of the heterochromatic X chromosome is not affected by its late DNA replication during S phase, or by the genetic inactivation and the resulting heterochromatinization.  相似文献   

3.
Four rodent species with very large heterochromatic regions on the sex chromosomes have been studied using in situ DNA/DNA hybridization techniques. Repetitious DNA fractions were obtained at C0t 0-0.01. Heterochromatic regions of X and X chromosomes of Cricetulus barabensis and Phodopus sungorus, and the heterochromatic long arm of the Y chromosome of Mesocricetus auratus do not contain disproportionately high amounts of repeated DNA sequences. Heterochromatic regions on sex chromosomes of Microtus subarvalis contain high amounts of repeated DNA sequences. Additional heterochromatic autosomal arms, a heterochromatic arm of the X chromosome, and a short arm of the Y chromosome of Mesocricetus auratus contain high amounts of repeated DNA sequences too.  相似文献   

4.
Various types of DNA damage, induced by endo- and exogenous genotoxic impacts, may become processed into structural chromosome changes such as sister chromatid exchanges (SCEs) and chromosomal aberrations. Chromosomal aberrations occur preferentially within heterochromatic regions composed mainly of repetitive sequences. Most of the preclastogenic damage is correctly repaired by different repair mechanisms. For instance, after N-methyl-N-nitrosourea treatment one SCE is formed per >40,000 and one chromatid-type aberration per approximately 25 million primarily induced O6-methylguanine residues in Vicia faba. Double-strand breaks (DSBs) apparently represent the critical lesions for the generation of chromosome structural changes by erroneous reciprocal recombination repair. Usually two DSBs have to interact in cis or trans to form a chromosomal aberration. Indirect evidence is at hand for plants indicating that chromatid-type aberrations mediated by S phase-dependent mutagens are generated by post-replication (mis)repair of DSBs resulting from (rare) interference of repair and replication processes at the sites of lesions, mainly within repetitive sequences of heterochromatic regions. The proportion of DSBs yielding structural changes via misrepair has still to be established when DSBs, induced at predetermined positions, can be quantified and related to the number of SCEs and chromosomal aberrations that appear at these loci after DSB induction. Recording the degree of association of homologous chromosome territories (by chromosome painting) and of punctual homologous pairing frequency along these territories during and after mutagen treatment of wild-type versus hyperrecombination mutants of Arabidopsis thaliana, it will be elucidated as to what extent the interphase arrangement of chromosome territories becomes modified by critical lesions and contributes to homologous reciprocal recombination. This paper reviews the state of the art with respect to DNA damage processing in the course of aberration formation and the interphase arrangement of homologous chromosome territories as a structural prerequisite for homologous rearrangements in plants.  相似文献   

5.
《Mutation Research Letters》1987,190(4):271-276
The C-band patterns, DNA late replication patterns and distribution patterns of spontaneous and γ-ray-induced SCEs in Crepis capillaris chromosomes were studied. The fluorescence plus Giemsa (FPG) technique was used for detection of SCEs and late-replicating chromosome regions after unifilar incorporation of BrdU into DNA. An asynchronous replication of both euchromatic and heterochromatic chromosome regions was established. The frequency of SCEs is increased about 2-fold by 1.5 Gy γ-rays. The localization of the sites of SCEs was analyzed with special reference to eu- and heterochromatin and early- and late-replicating regions. The data obtained showed that SCEs were distributed nonrandomly along the chromosomes. Preferential occurrence of SCEs was observed in the following chromosome regions: at the junction between eu- and heterochromatic regions, the latter being rich in late-replicating DNA; at the junction between early- and late-replicating regions, the latter not being C-band positive. Certain heterochromatic regions were more rarely involved in SCEs than expected on the basis of their length. The lowest incidence of SCEs was found in the centromeric regions. Very similar distribution patterns of spontaneous and γ-ray-induced SCEs were observed. The possible role of the differences in the time of replication of the different chromosome regions in the formation of SCEs is discussed.  相似文献   

6.
Franz Pera 《Chromosoma》1968,25(1):21-29
The duration of DNA replication of eu- and heterochromatin in kidney epithelial cell cultures of female Microtus agrestis was determined with combined H3-thymidine pulse labelling and cytophotometric determination of Feulgen DNA. The average duration of the total cell cycle was 23.3 hrs, with a G1 period of 14.6 hrs, S period of 5 hrs, G2 period of 2.7 hrs, and mitosis of 1 hr. The replication time of eu- and heterochromatin was determined by the frequency of the different labelling patterns after pulse labelling. The time sequence of the labelling patterns was ascertained by DNA measurements. During the S period, euchromatin replicates at first alone for 3 hrs (60% of the length of S) and 1 hr (19.3%) together with heterochromatin. During the last hour (20.7%), only heterochromatic regions replicate. The sex chromatin part of the one X chromosome starts synthesis 20 minutes (7.3% of S) before the remainder of the heterochromatic X material and ends 30 minutes (9.7% of S) prior to the termination of the S period. Replication of euchromatin takes about 80% of the duration of the total S period, whereas that of heterochromatin takes only 40%.

Mit dankenswerter Unterstützung durch die Deutsche Forschungs-Gemein-schaft.  相似文献   

7.
A presumptive mechanism of X inactivation has been investigated by using tritiated uridine-induced chromosome aberrations to distinguish active from inactive X chromosome arms in the insect Gryllotalpa fossor. Previous work on therian mammals has shown that constitutive and facultative heterochromatin are less susceptible to breakage by 3H-Urd than euchromatin (active). The present study indicates that, irrespective of the presence of two X chromosomes in females, only one of these is affected as in males and that the total number of aberrations induced by 3H-Urd in both male and female Gryllotalpa is the same. This suggests that in the female only one arm of one X chromosome is active and that a facultative heterochromatinization of the homologous arm of the other X is operative coupled with the presence of constitutive heterochromatin in the second arm of both X chromosomes.  相似文献   

8.
The olive fruit fly, Bactrocera oleae, has a diploid set of 2n?=?12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.  相似文献   

9.
The distribution of chromatid aberrations induced by mitomycin C among the individual chromosomes of female and male Chinese hamster cells in vitro was studied. The aberrations were found to be non-randomly distributed. Among the autosomes, the chromosomes possessing constitutive heterochromatin were more often involved in aberrations as well as in homologous exchanges. The inactivated X chromosomes in the female cells offer a situation where the short arm is facultatively heterochromatic and the long arm constitutively heterochromatic, thus enabling an analysis of their response for aberration formation. The short arm was seldom found to be involved in the aberration. The long arm of the inactivated X was more often affected (5 to 10 times) than the long arm of the functional X though both are constitutively heterochromatic. The possible role of (a) structure of heterochromatin, (b) the chromocenter formation and their association, (c) allocycly, and (d) the qualitative differences in the DNA of different types of heterochromatin are discussed in relation to the formation of chromatid aberrations.  相似文献   

10.
Chromosome aberrations induced at the first-cleavage metaphase of eggs fertilized with sperm recovered from spermiogenic cells which had been X-irradiated and treated with mitomycin C (MMC) at various stages were observed using in vitro fertilization and embryo culture technique. Furthermore, the repair capacity of the fertilized eggs for X-ray- and MMC-induced DNA damage which was induced in the spermiogenic cells and retained in the sperm until fertilization was investigated by analysis of the potentiation effects of 2 repair inhibitors, 3-aminobenzamide (3AB) and caffeine on the yield of chromosome aberrations. The frequency of chromosome aberrations observed in the eggs fertilized with sperm recovered from the early spermatid to late spermatocyte stage with X-irradiation of 4 Gy (16-20 days after X-irradiation) was markedly higher than that in the eggs fertilized with sperm recovered from spermatozoa to late spermatid stage (0-8 days after X-irradiation). The induced chromosome aberrations predominantly consisted of chromosome-type aberrations, the main type being chromosome fragment followed by chromosome exchange through all the spermiogenic stages. On the other hand, a high frequency of chromosome aberrations was not induced through all the stages with MMC treatment of 5 mg/kg. The remarkable potentiation effects of 3AB and caffeine were found in the eggs fertilized with sperm recovered from almost all the spermiogenic stages after X-irradiation. In the MMC treatment, a remarkable caffeine effect was observed occasionally in mid-early spermatids to late spermatocytes where a large amount of MMC damage could be induced. These results suggest that the large amount of DNA lesions induced in spermiogenic cells by X-rays and MMC persist as reparable damage until sperm maturation and are effectively repaired in the cytoplasm of the fertilized eggs.  相似文献   

11.
PHA-stimulated growth of human lymphocytes in the presence of idoxuridine (IUdR) results in chromosomal decondensation and fragility of large heterochromatic regions. This instability is especially evident in the heterochromatic region of chromosome 9 (9h). A high frequency of micronuclei is seen in all IUdR-treated cultures. By a combination of chromosomal localization of induced aberrations, analysis of metaphases with prematurely condensed micronuclear chromatin, and specific staining of 9h in interphase micronuclei, it can be shown that 80-90% of all micronuclei contains 9h material. This pattern is found whether the heterochromatic region is situated on the long arm or the short arm of chromosome 9. These observations suggest that IUdR-induced micronucleation may be a valuable method for separation of the long and short arms of human chromosome 9.  相似文献   

12.
The chronology of DNA replication was studied in cultured somatic cells of three stocks of Drosophila melanogaster marked by the presence of translocations between the Y chromosome and the X, 2nd and 3rd autosome, respectively. In all translocations the Y chromosome is split into two portions differently located. The different Y chromosome segments are always replicating later than euchromatin, but their timing of replication varies independently of the eu- or heterochromatic nature of the adjoining chromosome sections. This variation could be formally described as a position effect without spreading effect. It is concluded that there is evidence for the existence of factors controlling the timing of replication of the Y which are located on the chromosome itself.This is contribution No. 497 of the Euratom Biology Division. In Milano and Pavia this work was supported in part by grants of the Consiglio Nazionale delle Ricerche, Roma.  相似文献   

13.
E J Ward  B W Stewart 《Biochemistry》1987,26(6):1709-1717
Analysis, by benzoylated DEAE-cellulose chromatography, has been made of structural change in eu- and heterochromatic DNA from rat liver following administration of the carcinogen N-nitrosodimethylamine (10 mg/kg body weight). Either hepatic DNA was prelabeled with [3H]thymidine administered 2-3 weeks before injection of the carcinogen or the labeled precursor was given during regenerative hyperplasia in rats treated earlier with N-nitrosodimethylamine. Following phenol extraction of either whole liver homogenate or nuclease-fractionated eu- and heterochromatin, carcinogen-modified DNA was examined by stepwise or caffeine gradient elution from benzoylated DEAE-cellulose. In whole DNA, nitrosamine-induced single-stranded character was maximal 4-24 h after treatment, declining rapidly thereafter; gradient elution of these DNA preparations also provided short-term evidence of structural change. Following incubation of purified nuclei with micrococcal nuclease, 10-12% of labeled DNA was solubilized (eu-chromatin) by 1.0 unit of micrococcal nuclease (5 mg of DNA)-1 mL-1 after 9 min. In prelabeled animals, administration of N-nitrosodimethylamine caused a marked fall in the specific radioactivity of solubilized DNA, while that of sedimenting DNA was not affected. Caffeine gradient chromatography suggested short-term nitrosamine-induced structural change in euchromatic DNA, while increased binding of heterochromatic DNA was evident for up to 3 months after carcinogen treatment. Preparations of newly synthesized heterochromatic DNA from animals subjected to hepatectomy up to 2 months after carcinogen treatment provided evidence of heritable structural damage. Carcinogen-induced binding of heterochromatic DNA to benzoylated DEAE-cellulose was indicative of specific structural lesions whose affinity equalled that of single-stranded DNA up to 1.0 kilobase in length.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Summary Three cases of Y chromosomal aberrations were studied using a panel of Y-specific DNA sequences from both Yp and euchromatic Yq. One case was a phenotypic male fetus with a Y-derived marker chromosome. The short arm of this chromosome was intact, but most of its long arm was missing. The second case had a 46,Xyq- karyotype with portions of euchromatic Yq, including the spermatogenesis region, missing. The third case was a phenotypic female with a 46,XXp+ karyotype. The extra material on the Xp+ chromosome was derived from the heterochromatic, and part of the euchromatic, portion of Yq. Application of X-specific DNA sequences demonstrated that the distal portion of the short arm of the translocation X chromosome was deleted (Xpter—p22.3). The three examples demonstrate the importance of diagnostic DNA analysis in cases of marker chromosomes, and X and Y chromosomal aberrations. In addition, the findings in the patients facilitate further deletion mapping of euchromatic Yq.  相似文献   

15.
A satellite DNA fraction from P. eremicus, having a buoyant density of 1.705 g/ml in neutral CsCl density gradients, was isolated. In situ hybridization experiments, using 3H-RNA complementary to this DNA fraction indicated that the short (heterochromatic) arms of most of the autosomes contained this sequence. Conversely, in situ hybridization using 3H-complementary DNA (cDNA) synthesized from the cytoplasmic poly (A) RNA of P. eremicus (comprising a substantial fraction of total messenger RNA) showed that the number of silver grains in the long arms (euchromatin) was significantly higher than that in the short arms. The X chromosomes showed a distinct localization pattern of both sequences.  相似文献   

16.
Summary Prior studies have shown a preferential decondensation (or fragmentation) of the heterochromatic long arm of the X chromosome of Chinese hamster ovary cells when treated with carcinogenic crystalline NiS particles (crNiS). In this report, we show that the heterochromatic regions of mouse chromosomes are also more frequently involved in aberrations than euchromatic regions, although the heterochromatin in mouse cells is restricted to centromeric regions. We also present the karyotypic analyses of four cell lines derived from tumors induced by leg muscle injections of crystalline nickel sulfide which have been analyzed to determine whether heterochromatic chromosomal regions are preferentially altered in the transformed genotypes. Common to all cell lines was the presence of minichromosomes, which are acrocentric chromosomes smaller than chromosome 19, normally the smallest chromosome of the mouse karyotype. The minichromosomes were present in a majority of cells of each line although the morphology of this extra chromosome varied significantly among the cell lines. C-banding revealed the presence of centromeric DNA and thus these minichromosomes may be the result of chromosome breaks at or near the centromere. In three of the four lines a marker chromosome could be identified as a rearrangement between two chromosomes. In the fourth cell line a rearranged chromosome was present in only 15% of the cells and was not studied in detail. One of the three major marker chromosomes resulted from a centromeric fusion of chromosome 4 while another appeared to be an interchange involving the centromere of chromosome 2 and possibly the telomeric region of chromosome 17. The third marker chromosome involves a rearrangement between chromosome 4 near the telomeric region and what appears to be the centromeric region of chromosome 19. Thus, in these three major marker chromosomes centromeric heterochromatic DNA is clearly implicated in two of the rearrangements and less clearly in the third. The involvement of centromeric DNA in the formation of even two of four markers is consistent with the previously observed preference in the site of action of crNiS for heterochromatic DNA during the early stages of carcinogenesis.  相似文献   

17.
Labarere J  Bernet J 《Genetics》1977,87(2):249-257
The distribution of chromosomal aberrations between and within chromosomes of male D, melanogaster somatic cells after treatment with UV has been analyzed. -- Distribution of the breaks between chromosomes was largely nonrandom since we found a higher aberration frequency than that expected on the Y chromosome. Moreover, within the chromosomes the aberrations are clustered in the pericentromeric heterochromatic regions. The above distribution is compared with that of the breaks induced by X rays and methyl-methane-sulphonate (MMS) which were distributed in a different pattern.  相似文献   

18.
A young male with a karyotype of 46,X,+ mar is described. Physical mapping of the marker chromosome by using Y-specific single-copy or moderately repeated DNA sequences as molecular probes showed that, in addition to the heterochromatic part of the Yq, a considerable portion of the euchromatin in both Yp and Yq had been lost. These findings suggest that the marker chromosome is a ring Y, for the generally accepted model of ring formation implies breakages in both chromosome arms. The clinical features of the patient correlated well with the phenotypic changes expected from the loss of genetic material from the Y.  相似文献   

19.
Summary The pattern of DNA and RNA puffs in pair VII of polytene chromosomes has been investigated in the suspensor ofPhaseolus coccineus during early embryo development. The pattern of3H-TdR and3H-U incorporation has been also detected. Collected data indicate that: 1. both heterochromatic regions, p11 and q(111+112), of chromosome pair VII, organize large DNA puffs; 2. DNA puffs of both regions are specific of different embryo differentiation steps; 3. a seasonal influence on the DNA puffing seems also to be present, as demonstrated by the comparison of the results collected in two different crops; 4. the incorporation experiment by3H-TdR evidences that not all DNA puffs show clustered labeling; 5. the RNA puffing of the two regions seems also to be specific of determined embryo stages.  相似文献   

20.
The long arms of the X and Y chromosomes of the mosquito Anopheles atroparvus (2n equals 6) are equal in length, synchronous in their late DNA replication and have homologous G AND Q bands. This indicates that differentiation of the two sex chromosomes was the consequence of a single deletion of an autosome to give the Y chromosome, not followed by the acquisition of differential heterochromatic blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号