首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ion channels are signaling molecules and by them-selves perform no work. In this regard they are un like the usual membrane enzyme effectors for G proteins. The pathways of G protein receptor, G protein and ion channels are, therefore, purely infor mational in function. Because a single G protein may have several ion channels as effectors, the effects should be coordinated and this seems to be the case. Inhibition of Ca2+ current and stimulation of K+ currents would have a greater impact than either alone. Additional flexibility is provided by spontane ous noise in the complexes of G protein receptor, G protein, and ion channel. By having a non-zero setpoint, the range of control is extended and the responses become bi-directional.  相似文献   

2.
Shabala L  Cuin TA  Newman IA  Shabala S 《Planta》2005,222(6):1041-1050
The SOS signal-transduction pathway is known to be important for ion homeostasis and salt tolerance in plants. However, there is a lack of in planta electrophysiological data about how the changes in signalling and ion transport activity are integrated at the cellular and tissue level. In this study, using the non-invasive ion flux MIFE technique, we compared net K+, H+ and Na+ fluxes from elongation and mature root zones of Arabidopsis wild type Columbia and sos mutants. Our results can be summarised as follows: (1) SOS mutations affect the function of the entire root, not just the root apex; (2) SOS signalling pathway is highly branched; (3) Na+ effects on SOS1 may by-pass the SOS2/SOS3 complex in the root apex; (4) SOS mutation affects H+ transport even in the absence of salt stress; (5) SOS1 mutation affects intracellular K+ homeostasis with a plasma membrane depolarisation-activated outward-rectifying K+ channel being a likely target; (6) H+ pump also may be a target of SOS signalling. We provide an improved model of SOS signalling and discuss physiological mechanisms underlying salt stress perception and signalling in plants. Our work shows that in planta studies are essential for understanding the functional genomics of plant salt tolerance.  相似文献   

3.
Modulation of plant ion channels by oxidizing and reducing agents   总被引:1,自引:0,他引:1  
Ion channels are proteins forming hydrophilic pathways through the membranes of all living organisms. They play important roles in the electrogenic transport of ions and metabolites. Because of biophysical properties such as high selectivity for the permeant ion, high turnover rate, and modulation by physico-chemical parameters (e.g., membrane potential, calcium concentration), they are involved in several physiological processes in plant cells (e.g., maintenance of the turgor pressure, stomatal movements, and nutrient absorption by the roots). As plants cannot move, plant metabolism must be flexible and dynamic, to cope with environmental changes, to compete with other living species and to prevent pathogen invasion. An example of this flexibility and dynamic behavior is represented by their handling of the so-called reactive oxygen species, inevitable by-products of aerobic metabolism. Plants cope with these species on one side avoiding their toxic effects, on the other utilizing them as signalling molecules and as a means of defence against pathogens. In this review, we present the state-of-the-art of the modulation of plant ion channels by oxidizing and reducing agents.  相似文献   

4.
Tang Q  Huang J  Qian H  Chen L  Wang T  Wang H  Shen D  Wu H  Xiong R 《Life sciences》2007,80(7):601-608
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are known to inhibit cholesterol biosynthesis and prevent inflammation and oxidative stress. To explore the effects of atorvastatin on inflammatory progression and major cardiac electrophysiological changes in myocarditis, we used an animal model of experimental autoimmune myocarditis (EAM). In this model, BALB/c mice were treated with atorvastatin and we evaluated the levels of inflammation markers and currents of ionic channels that contribute to the duration of action potential (APD) of ventricular myocytes. We demonstrated that atorvastatin treatment attenuated inflammatory infiltration and suppressed the increase in TNF-alpha and IFN-gamma levels in EAM mouse hearts. In the whole-cell patch-clamp experiment, ventricular cardiomyocyte APD was prolonged in EAM group, and atorvastatin blocked this change. We further found that atorvastatin attenuated the significant decrease in outward potassium currents in EAM myocytes. Our results suggested that atorvastatin may ameliorate EAM progression by reducing inflammatory cytokine level. Atorvastatin exerted the antiarrhythmic effects by selectively affecting cardiomyocyte ion channel activity and therefore improves myocardial repolarization.  相似文献   

5.
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles.  相似文献   

6.
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles.  相似文献   

7.
The growth hormone auxin is a key regulator of plant cell division and elongation. Since plants lack muscles, processes involved in growth and movements rely on turgor formation, and thus on the transport of solutes and water. Modern electrophysiological techniques and molecular genetics have shed new light on the regulation of plant ion transporters in response to auxin. Guard cells, hypocotyls and coleoptiles have advanced to major model systems in studying auxin action. This review will therefore focus on the molecular mechanism by which auxin modulates ion transport and cell expansion in these model cell types.  相似文献   

8.
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and on atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies.  相似文献   

9.
Summary For patch-clamp measurements cultured kidney (OK) cells were exposed to osmotic and mechanical stress. Superfusion of a cell in whole cell configuration with hypotonic media (190 mOsm) evokes strong depolarization, which is reversible by returning to the isotonic bath medium. In the cell-attached configuration the exposure to hypotonic media evokes up to six ion channels of homogeneous single-channel properties in the membrane patch. Subsequently, the channels became activated after a time lag of a few seconds. At an applied membrane potential of 0 mV, the corresponding membrane current is directed inward and shows a transient behavior in the time range of minutes. In the same membrane patch these ion channels can be activated by application of negative hydrostatic pressure. The channel has a single-channel conductance of about 22 pS and is permeable to Na+ and K+ as well as to Cl. It is suggested that volume regulation involves mechanoreceptor-operated ion channels.  相似文献   

10.
In this study, the effects of cryopreservation on osmoregulation and ion homeostasis in bovine sperm were studied. We determined: (1) the osmotic tolerance limits and cell volume response upon exposure to anisotonic conditions, (2) the intracellular pH and potassium concentration, and (3) expression and localization of proteins encoding for potassium and chloride ion channels. A flow cytometric approach was used for simultaneous assessment of cell volume and viability of propidium iodide stained sperm in anisotonic media. Osmotic tolerance was found to be decreased after cryopreservation, especially in the 120 to 60 mOsm/kg osmotic range. The critical osmolality at which half of the sperm population survived increased from 55 to 89 mOsm/kg. The osmotic cell volume response for viable sperm was similar before and after cryopreservation, with an osmotic inactive volume of about 70%. The intracellular pH, determined by recording changes in carboxyfluorescein fluorescence of sperm in media with different pH before and after addition of digitonin, decreased from 6.28 in diluted sperm to 6.16 after cryopreservation. The intracellular potassium concentration, determined using the potassium ionophore nigericin and incubation in media with various potassium concentrations, increased from 154 mM to 183 mM before and after cryopreservation, respectively. The levels of the chloride and potassium ion channel proteins chloride channel 3 protein (CLC-3) and two pore domain potassium channel 2 protein (TASK-2), as detected using Western blot analysis, were not affected by cryopreservation. Immunolocalization studies showed that CLC-3 is present in the acrosome and midpiece as well as in the upper and lower tail. In conclusion, cryopreserved sperm exhibit reduced tolerance to hypotonic stress, a decreased intracellular pH, and increased intracellular potassium level.  相似文献   

11.
Restriction endonucleases protect bacterial cells against bacteriophage infection by cleaving the incoming foreign DNA into fragments. In presence of Mg2+ ions, EcoRV is able to cleave the DNA but not in presence of Ca2+, although the protein binds to DNA in presence of both metal ions. We make an attempt to understand this difference using conformational thermodynamics. We calculate the changes in conformational free energy and entropy of conformational degrees of freedom, like DNA base pair steps and dihedral angles of protein residues in Mg2+(A)-EcoRV-DNA complex compared to Ca2+(S)-EcoRV-DNA complex using all-atom molecular dynamics (MD) trajectories of the complexes. We find that despite conformational stability and order in both complexes, the individual degrees of freedom behave differently in the presence of two different metal ions. The base pairs in cleavage region are highly disordered in Ca2+(S)-EcoRV-DNA compared to Mg2+(A)-EcoRV-DNA. One of the acidic residues ASP90, coordinating to the metal ion in the vicinity of the cleavage site, is conformationally destabilized and disordered, while basic residue LYS92 gets conformational stability and order in Ca2+(S) bound complex than in Mg2+(A) bound complex. The enhanced fluctuations hinder placement of the metal ion in the vicinity of the scissile phosphate of DNA. Similar loss of conformational stability and order in the cleavage region is observed by the replacement of the metal ion. Considering the placement of the metal ion near scissile phosphate as requirement for cleavage action, our results suggest that the changes in conformational stability and order of the base pair steps and the protein residues lead to cofactor sensitivity of the enzyme. Our method based on fluctuations of microscopic conformational variables can be applied to understand enzyme activities in other protein-DNA systems.  相似文献   

12.
In earlier studies, we found that permeabilization of mammalian cells with nsPEF was accompanied by prolonged inhibition of voltage-gated (VG) currents through the plasma membrane. This study explored if the inhibition of VG Na(+) current (I(Na)) resulted from (i) reduction of the transmembrane Na(+) gradient due to its influx via nsPEF-opened pores, and/or (ii) downregulation of the VG channels by a Ca(2+)-dependent mechanism. We found that a single 300 ns electric pulse at 1.6-5.3 kV/cm triggered sustained Na(+) influx in exposed NG108 cells and in primary chromaffin cells, as detected by increased fluorescence of a Sodium Green Dye. In the whole-cell patch clamp configuration, this influx was efficiently buffered by the pipette solution so that the increase in the intracellular concentration of Na(+) ([Na](i)) did not exceed 2-3 mM. [Na](i) increased uniformly over the cell volume and showed no additional peaks immediately below the plasma membrane. Concurrently, nsPEF reduced VG I(Na) by 30-60% (at 4 and 5.3 kV/cm). In control experiments, even a greater increase of the pipette [Na(+)] (by 5 mM) did not attenuate VG I(Na), thereby indicating that the nsPEF-induced Na(+) influx was not the cause of VG I(Na) inhibition. Similarly, adding 20 mM of a fast Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) into the pipette solution did not prevent or attenuate the inhibition of the VG I(Na) by nsPEF. These findings point to possible Ca(2+)-independent downregulation of the VG Na(+) channels (e.g., caused by alteration of the lipid bilayer) or the direct effect of nsPEF on the channel.  相似文献   

13.
The capabilities of electrospray ionization mass spectrometry are demonstrated for monitoring the flux of metal ions out of and into the metalloprotein rabbit liver metallothionein and, in one example, chlorambucil-alkylated metallothionein. Metal ion transfers may be followed as the reactions proceed in situ to provide kinetic information. More uniquely to this technique, metal ion stoichiometries may be determined for reaction intermediates and products. Partners used in these studies include EDTA, carbonic anhydrase, a zinc-bound hexamer of insulin, and the core domain of bacteriophage T4 gene 32 protein, a binding protein for single-stranded DNA.  相似文献   

14.
The Ras-specific guanine nucleotide exchange region of hSos1 consists of two consecutive domains: the catalytic core (residues 742-1024) contains all residues binding to Ras, including the catalytic hairpin, and an upstream REM domain (residues 553-741), so called because it contains an evolutionary conserved Ras Exchange Motif (REM). We functionally define the boundaries of the REM domain through a combination of in vivo and in vitro assays. We show that an intra-REM domain interaction, mediated by phenylalanine 577, is required to allow interaction of the REM domain with the catalytic core, constraining it in the active conformation.  相似文献   

15.
16.
Aldosterone is produced by zona glomerulosa (ZG) cells of the adrenal cortex and plays a key role in balancing water and electrolytes levels. Autonomous overproduction of aldosterone leads to primary aldosteronism (PA), which is the most common form of secondary endocrine hypertension. Recently, significant progress has been made towards understanding the genetic basis of PA, where increasing clinical evidence suggests that mutations in ion channels appear to be the major cause of aldosterone-producing adenomas. In this review, we focused on potassium and calcium channels that regulate aldosterone secretion, and their roles in the pathology of PA. Because potassium and calcium channels are differentially expressed in ZG cells in different species of mammals, the limitations of published studies are also discussed.  相似文献   

17.
Cotton produces insecticidal terpenoids that are induced by tissue-feeding herbivores. Damage by Heliothis virescens caterpillars increases the terpenoid content, which reduces the abundance of aphids. This effect is not evident in Bt-transgenic cotton, which is resistant to H. virescens. We determined whether induction of terpenoids by caterpillars influences the host quality of Aphis gossypii for the parasitoid Lysiphlebus testaceipes and whether this interaction is influenced by Bt cotton. The exposure of parasitoids to terpenoids was determined by quantifying terpenoids in the aphids. We detected several terpenoids in aphids and found a positive relationship between their concentrations in plants and aphids. When L. testaceipes was allowed to parasitize aphids on Bt and non-Bt cotton that was infested or uninfested with H. virescens, fewer parasitoid mummies were found on infested non-Bt than on Bt cotton. Important parasitoid life-table parameters, however, were not influenced by induced resistance following H. virescens infestation, or the Bt trait. Our study provides an example of a tritrophic indirect interaction web, where organisms are indirectly linked through changes in plant metabolites.  相似文献   

18.
We have studied the binding interactions of biologically important carbohydrates (d-glucose, d-xylose and d-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu2(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn2(hpnbpda)(μ-OAc)] (2) [H3hpnbpda = N,N′-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N′-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H3hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV–vis and 13C NMR spectroscopic techniques. UV–vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV–vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in 13C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.  相似文献   

19.
The slow Ca2+ channels (L-type) of the heart are stimulated by cAMP. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a Ca2+ channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate ICa, Ca2+ influx, and contraction. The action of cAMP is mediated by PK-A and phosphorylation of the slow Ca2+ channel protein or an associated regulatory protein (stimulatory type). The myocardial slow Ca2+ channels are also rogulated by cGMP, in a manner that is opposite orantagonistic to that of cAMP. We have demonstrated this at both the macroscople level (whole-cell voltage clamp) and the single-channel level. The effect of cGMP is mediated by PK-G and phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the Ca2+ channel. Introduction of PK-G intracellularly causes a relatively rapid inhibition of ICa(L) in both chick and rat heart cells. Such inhibition occurs for both the basal and stimulated ICa(L). In addition, the cGMP/PK-G system was reported to stimulate a phosphatase that dephosphorylates the Ca2+ channel. In addition to the slower indirect pathway—exerted via cAMP/PK-A—there is a faster more-direct pathway for ICa(L) stimulation by the -adrenergic receptor. This latter pathway involves direct modulation of the channel activity by the alpha subunit (s*) of the Gs-protein. In vascular smooth muscle cells the two pathways (direct and indirect) also appear to be present, although the indirect pathway producesinhibition of ICa(L). PK-C and calmodulin-PK also may play roles in regulation of the myocardial slow Ca2+ channels. Both of these protein kinases stimulate the activity of these channels. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of factors intrinsic and extrinsic to the cell, and thereby control can be exercised over the force of contraction of the heart.This review-type article was prepared by modifying an article published in a book by Sperelakiset al., 1994.  相似文献   

20.
TRPC3/C6/C7 channels, a subgroup of classical/canonical TRP channels, are activated by diacylglycerol produced via activation of phospholipase C (PLC)-coupled receptors. Recognition of the physiological importance of these channels has been steadily growing, but the mechanism by which they are regulated remains largely unknown. We recently used a membrane-resident danio rerio voltage-sensing phosphatase (DrVSP) to study TRPC3/C6/C7 regulation and found that the channel activity was controlled by PtdIns(4,5)P 2-DAG signaling in a self-limiting manner (Imai Y et al., the Journal of Physiology, 2012). In this addendum, we present the advantages of using DrVSP as a molecular tool to study PtdIns(4,5)P 2 regulation. DrVSP should be readily applicable for studying phosphoinositide metabolism-linked channel regulation as well as lipid dynamics. Furthermore, in comparison to other modes of self-limiting ion channel regulation, the regulation of TRPC3/C6/C7 channels seems highly susceptible to activation signal strength, which could potentially affect both open duration and the time to peak activation and inactivation. Dysfunction of such self-limiting regulation may contribute to the pathology of the cardiovascular system, gastrointestinal tract and brain, as these channels are broadly distributed and affected by numerous neurohormonal agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号