首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Streptococcus mutans UA159, the genome sequence reference strain, exhibits nonlantibiotic bacteriocin (mutacin) activity. In this study, we have combined bioinformatic and mutational analyses to identify the ABC transporter designated NlmTE, which is required for mutacin biogenesis in strain UA159 as well as in another mutacin producer, S. mutans N.  相似文献   

3.
Here we present evidence that the cryptic 5.6-kb plasmid found in certain strains of Streptococcus mutans is not involved in mutacin production. This evidence comes from demonstrating similarities between a plasmid-less strain T8 and a group II plasmid strain UA96. Both produce what appears to be an identical mutacin based on spectrum of activity and physiological properties. Also, T8 and UA96 are members of the same immunity group (group II). Genotypically, both strains appear similar except for plasmid content based on DNA fingerprinting profiles. T8 and UA96 exhibit identical hybridization patterns following transformation of T8 with a mutacin-negative (bac-1::Tn916) sequence from a Tn916-insertionally inactivated mutant of UA96. This transformation also resulted in the mutacin-negative phenotype in T8 transformants, showing recombination between a mutacin-associated gene in UA96 and its apparent homologous sequence in T8. Moreover, when a plasmid containing a putative repeat element from UA96 (pPC264) was used as a probe, it hybridized to the same five EcoRI fragments in both T8 and UA96. Collectively, these data, coupled with data from other sources, indicate that the plasmid resident in mutacin II strains is not involved in mutacin production.  相似文献   

4.
There are suggestions that the phylogeny of Streptococcus mutans, a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serotype e. DNA sequences from the HVR of the plasmid produced a well-resolved phylogeny that differed from the chromosomal phylogeny, indicating that the horizontal transfer of the plasmid may have occurred multiple times. The plasmid phylogeny was more congruent with serotype e than with mutacin II evolution, suggesting a possible functional correlation. Thus, the history of this three-tiered relationship between human, bacterium, and plasmid supported both coevolution and independent evolution.  相似文献   

5.
Previously, we reported isolation and characterization of mutacin III and genetic analysis of mutacin III biosynthesis genes from the group III strain of Streptococcus mutans, UA787 (F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:3880-3887, 1999). During the same process of isolating the mutacin III structural gene, we also cloned the structural gene for mutacin I. In this report, we present purification and biochemical characterization of mutacin I from the group I strain CH43 and compare mutacin I and mutacin III biosynthesis genes. The mutacin I biosynthesis gene locus consists of 14 genes in the order mutR, -A, -A', -B, -C, -D, -P, -T, -F, -E, -G, orfX, orfY, orfZ. mutA is the structural gene for mutacin I, while mutA' is not required for mutacin I activity. DNA and protein sequence analysis revealed that mutacins I and III are homologous to each other, possibly arising from a common ancestor. The mature mutacin I is 24 amino acids in size and has a molecular mass of 2, 364 Da. Ethanethiol modification and peptide sequencing of mutacin I revealed that it contains six dehydrated serines, four of which are probably involved with thioether bridge formation. Comparison of the primary sequence of mutacin I with that of mutacin III and epidermin suggests that mutacin I likely has the same bridging pattern as epidermin.  相似文献   

6.
Strains of Streptococcus mutans produce at least three mutacins, I, II, and III. Mutacin II is a member of subgroup AII in the lantibiotic family of bacteriocins, and mutacins I and III belong to subgroup AI in the lantibiotic family. In this report, we characterize two mutacins produced by UA140, a group I strain of S. mutans. One is identical to the lantibiotic mutacin I produced by strain CH43 (F. Qi et al., Appl. Environ. Microbiol. 66:3221-3229, 2000); the other is a nonlantibiotic bacteriocin, which we named mutacin IV. Mutacin IV belongs to the two-peptide, nonlantibiotic family of bacteriocins produced by gram-positive bacteria. Peptide A, encoded by gene nlmA, is 44 amino acids (aa) in size and has a molecular mass of 4,169 Da; peptide B, encoded by nlmB, is 49 aa in size and has a molecular mass of 4,826 Da. Both peptides derive from prepeptides with glycines at positions -2 and -1 relative to the processing site. Production of mutacins I and IV by UA140 appears to be regulated by different mechanisms under different physiological conditions. The significance of producing two mutacins by one strain under different conditions and the implication of this property in terms of the ecology of S. mutans in the oral cavity are discussed.  相似文献   

7.
Streptococcus mutans UA159, the genome sequence reference strain, exhibits nonlantibiotic mutacin activity. In this study, bioinformatic and mutational analyses were employed to demonstrate that the antimicrobial repertoire of strain UA159 includes mutacin IV (specified by the nlm locus) and a newly identified bacteriocin, mutacin V (encoded by SMU.1914c).  相似文献   

8.
It is important to ensure DNA availability when bacterial cells develop competence. Previous studies in Streptococcus pneumoniae demonstrated that the competence-stimulating peptide (CSP) induced autolysin production and cell lysis of its own non-competent cells, suggesting a possible active mechanism to secure a homologous DNA pool for uptake and recombination. In this study, we found that in Streptococcus mutans CSP induced co-ordinated expression of competence and mutacin production genes. This mutacin (mutacin IV) is a non-lantibiotic bacteriocin which kills closely related Streptococcal species such as S. gordonii. In mixed cultures of S. mutans and S. gordonii harbouring a shuttle plasmid, plasmid DNA transfer from S. gordonii to S. mutans was observed in a CSP and mutacin IV-dependent manner. Further analysis demonstrated an increased DNA release from S. gordonii upon addition of the partially purified mutacin IV extract. On the basis of these findings, we propose that Streptococcus mutans, which resides in a multispecies oral biofilm, may utilize the competence-induced bacteriocin production to acquire transforming DNA from other species living in the same ecological niche. This hypothesis is also consistent with a well-known phenomenon that a large genomic diversity exists among different S. mutans strains. This diversity may have resulted from extensive horizontal gene transfer.  相似文献   

9.
Streptococcus mutans, a principal causative agent of dental caries, secretes antimicrobial peptides known as mutacins to suppress the growth of competing species to establish a successful colonization. S. mutans UA159, a sequenced strain, produces at least two major mutacins, mutacins IV and V. Mutacin IV is a two-peptide mutacin encoded by nlmAB genes, which are mapped just upstream of a putative immunity-encoding gene SMU.152. Here we explored the function of SMU.152 as an immunity protein. We observed that overexpression of SMU.152 in two sensitive host strains converted the strains to become immune to mutacin IV. To identify the residues that are important for immunity function, we sequentially deleted residues from the C-terminal region of SMU.152. We observed that deletion of as few as seven amino acids, all of which are highly charged (KRRSKNK), drastically reduced the immunity function of the protein. Furthermore, we identified two other putative immunity proteins, SMU.1909 and SMU.925, which lack the last four charged residues (SKNK) that are present in SMU.152 but contain the KRR residues. Synthetic addition of SKNK residues to either SMU.1909 or SMU.925 to reconstitute the KRRSKNK motif and expressing these constructs in sensitive cells rendered the cells resistant to mutacin IV. We also demonstrated that deletion of Man-PTS system from a sensitive strain made the cells partially resistant to mutacin IV, indicating that the Man-PTS system plays a role in mutacin IV recognition.  相似文献   

10.
11.
目的 从变形链球菌临床株的液体培养基中分离纯化变链素,为进一步从分子水平研究变链素奠定基础.方法 通过抑菌活性检测,从变链临床株中选择出抑菌活性较强的菌株.用氯仿抽提法从该菌株的培养液中粗提变链素,经固相萃取和反相高效液相色谱(RP-HPLC)对粗提物进行纯化.结果 获得变链素活性较强的菌株"1G".从其200 ml液体培养基中粗提出变链素约15 μg,经固相萃取柱洗脱,再经过RP-HPLC 2次纯化,得到有抑菌活性的成分,此为纯化的变链素.结论 变链素分子量小,分离提纯步骤复杂,本实验得到纯化的变链素,为下一步研究变链素的氨基酸序列和基因序列奠定了基础.  相似文献   

12.
Streptococcus mutans strain N was shown to have bacteriocin production and immunity characteristics consistent with those of Group I mutacin-producing strains of S. mutans. The bacteriocin mutacin N was purified from agar cultures of S. mutans strain N using XAD andp6 reversed phase chromatography. The molecular mass of mutacin N was 4806 Da and the entire 49 amino acid sequence was determined by N-terminal sequencing. Database searches indicate that mutacin N is a novel bacteriocin, but with some homology to the protein IIC domain of a hypothetical sugar-phosphotransferase enzyme from Acholeplasma florum.  相似文献   

13.
Previously, we reported isolation and characterization of mutacin III and genetic analysis of mutacin III biosynthesis genes from the group III strain of Streptococcus mutans, UA787 (F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:3880–3887, 1999). During the same process of isolating the mutacin III structural gene, we also cloned the structural gene for mutacin I. In this report, we present purification and biochemical characterization of mutacin I from the group I strain CH43 and compare mutacin I and mutacin III biosynthesis genes. The mutacin I biosynthesis gene locus consists of 14 genes in the order mutR, -A, -A′, -B, -C, -D, -P, -T, -F, -E, -G, orfX, orfY, orfZ. mutA is the structural gene for mutacin I, while mutA′ is not required for mutacin I activity. DNA and protein sequence analysis revealed that mutacins I and III are homologous to each other, possibly arising from a common ancestor. The mature mutacin I is 24 amino acids in size and has a molecular mass of 2,364 Da. Ethanethiol modification and peptide sequencing of mutacin I revealed that it contains six dehydrated serines, four of which are probably involved with thioether bridge formation. Comparison of the primary sequence of mutacin I with that of mutacin III and epidermin suggests that mutacin I likely has the same bridging pattern as epidermin.  相似文献   

14.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxS(Sm)) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

15.
Previously, members of our group reported the isolation and characterization of mutacin II from Streptococcus mutans T8 and the genetic analyses of the mutacin II biosynthesis genes (J. Novak, P. W. Caufield, and E. J. Miller, J. Bacteriol. 176:4316–4320, 1994; F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:652–658, 1999; P. Chen, F. Qi, J. Novak, and P. W. Caufield, Appl. Environ. Microbiol. 65:1356–1360, 1999). In this study, we cloned and sequenced the mutacin III biosynthesis gene locus from a group III strain of S. mutans, UA787. DNA sequence analysis revealed eight open reading frames, which we designated mutR, -A, -A′, -B, -C, -D, -P, and -T. MutR bears strong homology with MutR of mutacin II, while MutA, -B, -C, -D, -P, and -T are counterparts of proteins in the lantibiotic epidermin group. MutA′ has 60% amino acid identity with MutA and therefore appears to be a duplicate of MutA. Insertional inactivation demonstrated that mutA is an essential gene for mutacin III production, while mutA′ is not required. Mutacin III was purified to homogeneity by using reverse-phase high-pressure liquid chromatography. N-terminal peptide sequencing of the purified mutacin III determined mutA to be the structural gene for prepromutacin III. The molecular mass of the purified peptide was measured by laser disorption mass spectrophotometry and found to be 2,266.43 Da, consistent with our supposition that mutacin III has posttranslational modifications similar to those of the lantibiotic epidermin.  相似文献   

16.
Previous studies have shown that BrpA plays a major role in acid and oxidative stress tolerance and biofilm formation by Streptococcus mutans. Mutant strains lacking BrpA also display increased autolysis and decreased viability, suggesting a role for BrpA in cell envelope integrity. In this study, we examined the impact of BrpA deficiency on cell envelope stresses induced by envelope-active antimicrobials. Compared to the wild-type strain UA159, the BrpA-deficient mutant (TW14D) was significantly more susceptible to antimicrobial agents, especially lipid II inhibitors. Several genes involved in peptidoglycan synthesis were identified by DNA microarray analysis as downregulated in TW14D. Luciferase reporter gene fusion assays also revealed that expression of brpA is regulated in response to environmental conditions and stresses induced by exposure to subinhibitory concentrations of cell envelope antimicrobials. In a Galleria mellonella (wax worm) model, BrpA deficiency was shown to diminish the virulence of S. mutans OMZ175, which, unlike S. mutans UA159, efficiently kills the worms. Collectively, these results suggest that BrpA plays a role in the regulation of cell envelope integrity and that deficiency of BrpA adversely affects the fitness and diminishes the virulence of OMZ175, a highly invasive strain of S. mutans.  相似文献   

17.
目的构建变形链球菌UAl59密度感应相关的comD基因同源重组DNA片段,为利用同源重组原理构建基因功能丧失菌株做准备。方法通过NCBI基因数据库获取变形链球菌的DNA序列,利用聚合酶链反应技术分别扩增变形链球菌UA159comD基因上、下游片段及抗红霉素基因片段,再通过长臂同源多聚酶链反应将这3个片段连接起来,形成同源重组DNA片段。结果经过PCR反应和琼脂电泳分析,得到了一个碱基数为3个单片段总和的连接片段,测序结果显示连接片段为预期的comD同源重组片段。结论成功构建了变形链球菌UA159comD基因同源重组DNA片段,可直接用于细菌转化构建comD基因缺陷菌株。  相似文献   

18.
Mutacin MT6223, a cell-free bacteriocin produced by Streptococcus sobrinus MT6223, was purified by ammonium sulphate precipitation, chromatofocusing with PBE 94 and column chromatography on SP Sephadex C-25. The specific activity of the purified mutacin was increased 1950-fold with a recovery of 9.7%. The molecular mass of the purified mutacin preparation was estimated to be 6.5 kDa. The mutacin activity was stable from pH 2-7, and was resistant to treatment at 100 degrees C for 20 min. It was inactivated by papain or ficin digestion, and was partially inhibited by alpha-chymotrypsin. The mutacin was found to be active against strains of serotypes c, e and f of Streptococcus mutans and the addition of purified mutacin MT6223 to growing cells of S. mutans MT8148 resulted in a rapid inhibition of incorporation of [3H]thymidine, [3H]uracil or L-[3H]glutamic acid into DNA, RNA or protein, respectively. Specific pathogen-free Fischer rats fed diet 2000 and infected with S. mutans MT8148R showed significantly fewer caries and lower plaque scores when mutacin was administered through drinking water. The present study demonstrates that mutacin MT6223 inhibited the growth of mutans streptococci. Thus, mutacin MT6223 may be a candidate for use in dental caries prevention.  相似文献   

19.
Streptococcus mutans UA159, whose genome is completely sequenced, produces two nonlantibiotic mutacins, mutacin IV (encoded by nlmAB) and mutacin V (encoded by nlmC). In this study, we investigated the contribution of nlmA and nlmB to mutacin IV activity and demonstrated by performing genetic studies as well as by using semipurified molecules that, in contrast to a previous report, both of these genes are required for optimum mutacin IV activity. We also showed that mutacin IV is active against multiple Streptococcus species. In contrast, mutacin V displayed a narrower inhibitory range than mutacin IV. Our results suggest that mutacin IV and mutacin V may act synergistically to inhibit various organisms.  相似文献   

20.
Strains of Streptococcus mutans produce at least three mutacins, I, II, and III. Mutacin II is a member of subgroup AII in the lantibiotic family of bacteriocins, and mutacins I and III belong to subgroup AI in the lantibiotic family. In this report, we characterize two mutacins produced by UA140, a group I strain of S. mutans. One is identical to the lantibiotic mutacin I produced by strain CH43 (F. Qi et al., Appl. Environ. Microbiol. 66:3221–3229, 2000); the other is a nonlantibiotic bacteriocin, which we named mutacin IV. Mutacin IV belongs to the two-peptide, nonlantibiotic family of bacteriocins produced by gram-positive bacteria. Peptide A, encoded by gene nlmA, is 44 amino acids (aa) in size and has a molecular mass of 4,169 Da; peptide B, encoded by nlmB, is 49 aa in size and has a molecular mass of 4,826 Da. Both peptides derive from prepeptides with glycines at positions −2 and −1 relative to the processing site. Production of mutacins I and IV by UA140 appears to be regulated by different mechanisms under different physiological conditions. The significance of producing two mutacins by one strain under different conditions and the implication of this property in terms of the ecology of S. mutans in the oral cavity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号