首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Synechococcus sp. PCC7942 strain carrying a missense mutation in the peptide-binding domain of DnaK3, one of the essential dnaK gene products, revealed temperature-sensitive growth. We also isolated suppressor mutants of this strain. One of the suppressors was mapped in the ribosomal protein gene rpl24 (syc1876), which encodes the 50S ribosomal protein L24. Subcellular localization of three DnaK proteins was determined, and the results indicated that a quantity of DnaK3 was dislocated from membrane-bound polysomes when dnaK3 temperature-sensitive mutant was incubated at non-permissive temperatures. Furthermore, we examined the photosystem II reaction center protein D1 and detected a translational intermediate polypeptide in membrane-bound polysome fractions prepared from dnaK3 temperature-sensitive cells grown at high temperature. These characteristic features of DnaK3 localizations and detection of D1 protein intermediate were not observed in the suppressor mutant even at high temperatures.  相似文献   

3.
We have characterized recessive and dominant omnipotent suppressor mutations obtained by conversion of the leu2-1 UAA mutation and the met8-UAG mutation in a ψ+ strain of Saccharomyces cerevisiae. The suppressors that act recessively upon these markers fell into two complementation groups; the sup47 and sup36 suppressors show linkage to the tyr1 locus and the aro1 locus, respectively. Of the suppressors acting dominantly upon both markers, those linked to the tyr1 locus are alleles of the SUP46 ribosomal mutation. The sup47 suppressors differ from the SUP46 suppressors not only in their suppressor activities in heterozygous diploids but also in their map positions relative to the tyr1 locus and their effects on the S11 ribosomal protein. The remaining dominant suppressors are not alleles of sup36 as judged by linkage analysis. The recessive suppressors and the dominant suppressors also differ in their effects on cell growth.  相似文献   

4.
Summary A spontaneous mutant was isolated that harbors a weak suppressing activity towards a UAG mutation, together with an inability to grow at 43° C in rich medium. The mutation is shown to be associated with an increased misreading of UAG at certain codon contexts and UAA. UGA, missense or frameshift mutations do not appear to be misread to a similar extent. The mutation gives an increased efficiency to several amber tRNA suppressors with-out increasing their ambiguity towards UAA. The ochre suppressors SuB and Su5 are stimulated in their reading of both UAG and UAA with preference for UAG. An opal suppressor is not affected. The effect of the mutation on the efficiency of amber and ochre suppressors is dependent on the codon context of the nonsense codon.The mutated gene (uar) has been mapped and found to be recessive both with respect to suppressor-enhancing ability as well as for temperature sensitivity. The phenotype is partly suppressed by the ochre suppressor SuC. It is suggested that uar codes for a protein, which is involved in translational termination at UAG and UAA stop codons.  相似文献   

5.
Summary The PET122 protein is one of three Saccharomyces cerevisiae nuclear gene products required specifically to activate translation of the mitochondrially coded COX3 mRNA. We have previously observed that mutations which remove the carboxy-terminal region of PET122 block translation of the COX3 mRNA but can be suppressed by unlinked nuclear mutations in several genes, two of which have been shown to code for proteins of the small subunit of mitochondrial ribosomes. Here we describe and map two more new genes identified as allele-specific suppressors that compensate for carboxy-terminal truncation of PET122. One of these genes, MRP17, is essential for the expression of all mitochondrial genes and encodes a protein of Mr 17343. The MRP17 protein is a component of the small ribosomal subunit in mitochondria, as demonstrated by the fact that a missense mutation, mrp17-1, predicted to cause a charge change indeed alters the charge of a mitochondrial ribosomal protein of the expected size. In addition, mrp17-1, in combination with some mutations affecting another mitochondrial ribosomal protein, caused a synthetic defective phenotype. These findings are consistent with a model in which PET122 functionally interacts with the ribosomal small subunit. The second new suppressor gene described here, PET127, encodes a protein too large (Mr 95900) to be a ribosomal protein and appears to operate by a different mechanism. PET127 is not absolutely required for mitochondrial gene expression and allele-specific suppression of pet122 mutations results from the loss of PET127 function: a pet127 deletion exhibited the same recessive suppressor activity as the original suppressor mutation. These findings suggest the possibility that PET127 could be a novel component of the mitochondrial translation system with a role in promoting accuracy of translational initiation.  相似文献   

6.
Starting with anEscherichia coli strain containingglyT56, a glycine transfer RNA suppressor of the arginine codons AGA and AGG, and atrpA mutant containing lysine at position 211 of the tryptophan synthetase alpha chain, we have isolated AAG-suppressors that fall into two classes. In class 1 are dominant suppressors that arose with the simultaneous loss ofglyT56 activity. They are approximately 50% cotransducible withargE, as isglyT, and appear to be derived fromglyT56. Class 2 suppressors, located betweenpurE andtrp on theE. coli map, are not near any glycine tRNA genes, and may represent novel missense suppressors.  相似文献   

7.
Summary The biochemical basis of suppression of a temperature-sensitive alanyl-tRNA synthetase (alaS) mutation by mutational alterations of the ribosome has been investigated. Measurement of the polyU-dependent polyphenylalanine synthesis showed that ribosomes from the suppressor strains are less active than ribosomes from the unsuppressed aminoacyl-tRNA synthetase mutant. In this system no increased translational ambiguity could be detected for the suppressor ribosomes. This fact and also the findings that the ram-1 mutation is not able to suppress the aminoacyl-tRNA synthetase mutation and that presence of the suppressor allele is not accompanied by a measureably improved alanyl-tRNA synthetase activity argue against the possibility that suppression might be due to increased translational misreading rates of the alanyl-tRNA synthetase mRNA.It has been further found that partial suppression of temperature sensitive growth of the alaS mutation can be achieved by independent ribosomal mutations leading to reduced growth rates because of a mutation to antibiotic resistance. Addition of low concentrations of a variety of antibiotics acting at the ribosomal level can also partially revert the temperature-sensitive phenotype of the alaS mutant. Although the possibility cannot be excluded that suppression is due to the stabilisation or activation of the mutant enzyme by some indirect effect of the suppressor ribosomal mutations, the following working hypothesis is favoured at the moment: It is assumed that limitation of the aminoacyl-tRNA synthetase activity in a certain range of the restrictive temperature causes growth inhibition by the premature termination of polypeptide synthesis at the ribosome or by the unbalanced synthesis of the individual cellular proteins under this condition. The mechanism of suppression by ribosomal mutations is proposed to consist of the release of this growth inhibition by the reduction of the rate of polypeptide synthesis, which would keep amino acid incorporation from exceeding the slow charging of tRNA and thus exhausting the pool of charged tRNA. In the suppressor strains, therefore, growth at the semi-restrictive temperature is no longer limited by the aminoacylation of tRNA but by the translational process at the mutated ribosome. This influence of the ribosomal mutation on the speed of translation could be directly or indirectly coupled with an effect on translational fidelity resulting in the prevention of the binding of uncharged or non-cognate charged tRNA or in the tighter binding of peptidyl-tRNA when cognate aminoacyl-tRNA is limiting.  相似文献   

8.
Summary Antisuppressors were screened for with the help of informational suppressors inPodospora anserina. Four mutations in the AS1 locus and two in the AS2 locus were isolated, using allele non specific suppressors supposed to be ribosomal ambiguity mutations. Four mutations in the AS3 locus and 45 in the AS4 locus were obtained, using a nonsense (tRNA like) suppressor. All antisuppressors are partially dominant. Most mutations in the AS4 locus are lethal. The four mutants at the AS3 locus and 6 out of the 8 viable mutants at the AS4 locus are cold sensitive. Phenotypic properties and action spectra of the antisuppressors suggest that they are restrictive ribosomal mutations.  相似文献   

9.
Summary The acu-1 locus in Coprinus is the structural gene for acetyl-CoA synthetase. Five suppressor gene mutations, which suppress the acu-1,34 missense allele, were induced by mutagen treatment. All five suppressors were shown to have properties expected for tRNA structural gene mutations: they are recessive, they show a gene dosage effect in any doubly heterozygous combination of two sup + mutations and they are allele specific in action.Crosses between suppressed mutants established that at least four suppressor loci were represented. Doubly suppressed mutants derived from these crosses were used to show that the gene dosage effect is maintained when two sup + mutations are in cis as well as trans combinations in the two nuclei of the basidiomycete dikaryon.Extracts of the unsuppressed acu-1.34 mutant contained less than 2% of wild type acetyl-CoA synthetase activity whereas extracts of four of the five suppressor strains showed activities ranging from 28 to 37% of wild type. Only a slight increase in activity was detected in the fifth suppressor strain but this was associated with a temperature sensitive sup + phenotype. All five sup + mutations restored the ability of the acu-1.34 mutant to induce isocitrate lyase, an enzyme which, under the conditions of growth used, can only be induced when acetyl-CoA synthetase activity is present. Thus all five suppressors act to restore normal acu-1 protein function.  相似文献   

10.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal. Received: 19 August 1997 / Accepted: 11 December 1997  相似文献   

11.
Summary Twenty-one suppressor gene mutations which suppress the met-5.1 missense mutation of Coprinus were separated into six groups (A-F) on the basis of dominance or recessiveness, linkage to the met-5 locus, comlementation in heterozygous cells and growth behaviour. The actual number of suppressor loci could not be determined because crosses between suppressed mutants were inviable. The allele specificity of group A, C, D and F suppressors was confirmed by appropriate crosses. Group B and E suppressors were not tested because of close linkage to the met-5 locus. No evidence for functional suppression of met-5 mutations was obtained thus it is likely that all the suppressors cause translational corelation of met-5.1. Suppressors in four groups (C-F) have properties expected of tRNA structural gene mutations: the group C mutation is dominant, the other mutations are recessive but do not complement in heterozygous cells. The relative efficiencies of the tRNA species involved was assessed by comparing the degree to which the different sup + mutations depressed the growth rate on methionine supplemented medium. The dominant mutation depressed growth to the greatest extent and is, therefore, the most efficient suppressor. The least efficient suppressors did not depress growth at all. When growth was compared on minimal medium it was found that the more efficient the suppressor the less well it restored growth. The mutations in groups A and B depressed growth more than the tRNA mutations but affect some other component in translation because they are recessive and complement normally. It is suggested that they may act to alter tRNA modifying enzymes.  相似文献   

12.
Suppressors of a UGG missense mutation in Escherichia coli   总被引:6,自引:1,他引:5       下载免费PDF全文
As part of our investigation of tRNA structure-function relationships, we isolated and preliminarily characterized translational suppressors of the tryptophan codon UGG in a trpA missense mutant of Escherichia coli. the parent strain also contained two other mutant alleles relevant to the suppressor search; these were supD, which codes for a serine-inserting amber suppressor tRNA, and gly V55, the gene for a GGA/G-reading mutationally altered glycine tRNA. On the basis of map location, reversed-phase (RPC-5) column chromatography of glycyl-tRNA, and codon response, several classes have been distinguished so far. The number of suppressors in each class, their codon responses, and their apparent genic identities, respectively, are as follows: class 1--4 suppressors, UGG, supD; class 2--12 suppressors, UGG, glyU; class 3--9 suppressors, UGA and UGG, glyT; class 4--2 suppressors, UGG, glyT; class 5--7 suppressors, UGG, gly V55. Besides these, one suppressor retains supD activity, but so far its map location has not been distinguished from that of supD. Another suppressor clearly does not map near supD or any of the glycine tRNA genes mentioned. These last two suppressors may represent novel missense suppressors such as misacylated tRNA's or mutationally altered aminoacyl-tRNA synthetases, tRNA modification enzymes, or ribosomes. Finally, three other suppressors were obtained from a strain containing glyT56, the gene for an AGA/G-reading form of glyT tRNA. All three occurred at the expense of glyT56 activity and exhibited the the transductional linkage to argH that is characteristic of glyT.  相似文献   

13.
Summary A suppressor mutation of a temperature-sensitive mutant of ribosomal protein L24 (rplX19) was mapped close to the lon gene by genetic analysis and was shown to affect protease LA. The degradation and the synthesis rates of individual ribosomal proteins were determined. Proteins L24, L14, L15 and L27 were found to be degraded faster in the original rplX19 mutant than in the rplX19 mutant containing the suppressor mutation. Other ribosomal proteins were either weakly or not at all degraded in both mutants. Temperature-sensitive growth was also suppressed by the overproduction of mutant protein L24 from a plasmid. Our results suggest that (1) either free ribosomal proteins or proteins bound to abortive assembly precursors are highly susceptible to the lon gene product and (2) the mutationally altered protein L24 can still function at the nonpermissive growth temperature of the mutant, if it is present in sufficient amounts.  相似文献   

14.
Chattoo BB  Palmer E  Ono B  Sherman F 《Genetics》1979,93(1):67-79
A total of 358 lys2 mutants of Saccharomyces cerevisiae have been characterized for suppressibility by the following suppressors: UAA and UAG suppressors that insert tyrosine, serine or leucine; a putative UGA suppressor; an omnipotent suppressor SUP46; and a frameshift suppressor SUF1–1. In addition, the lys2 mutants were examined for phenotypic suppression by the aminoglycoside antibiotic paromomycin, for osmotic remediability and for temperature sensitivity. The mutants exhibited over 50 different patterns of suppression and most of the nonsense mutants appeared similar to nonsense mutants previously described. A total of 24% were suppressible by one or more of the UAA suppressors, 4% were suppressible by one or more of the UAG suppressors, while only one was suppressible by the UGA suppressor and only one was weakly suppressible by the frameshift suppressor. One mutant responded to both UAA and UAG suppressors, indicating that UAA or UAG mutations at certain rare sites can be exceptions to the specific action of UAA and UAG suppressors. Some of the mutants appeared to require certain types of amino acid replacements at the mutant sites in order to produce a functional gene product, while others appeared to require suppressors that were expressed at high levels. Many of the mutants suppressible by SUP46 and paromomycin were not suppressible by any of the UAA, UAG or UGA suppressors, indicating that omnipotent suppression and phenotypic suppression need not be restricted to nonsense mutations. All of the mutants suppressible by SUP46 were also suppressible by paromomycin, suggesting a common mode of action of omnipotent suppression and phenotypic misreading.  相似文献   

15.
Summary Formalin-killed Corynebacterium parvum (CP), given at a dose of 0.4–0.7 mg/mouse IV or IP, induced suppressor cells for NK activity in B6C3F1 mice. The suppressor cells belong to at least two different populations, plastic adherent and nonadherent, and were not depleted by antibodies specific for Thy-1.2, Iak, or NK-1.2 surface markers. Administration of p-I:C, an interferon-inducer, to animals 18 h before the assay did not affect the suppressor activity. Hypotonic shock treatment of splenocytes abrogated the in vitro suppressive activity, and subsequent reconstitution of the shock-treated cells with RBC failed to restore the suppressive activity. SJL/J mice, which have low NK activity, exhibited suppressor activity comparable to B6C3F1 mice following CP treatment, whereas CP-treated BALB/c athymic and euthymic mice showed a lower ability to generate suppressors for NK as compared to B6C3F1 mice.  相似文献   

16.
Summary We have compared the competition between strong or weak suppressor tRNAs and translational release factors (RF) at nonsense codons in the lacI gene of Escherichia coli. Using the F'lacIZ fusions developed by Miller and coworkers, UAG, UAA, and UGA codons at positions 189 and 220 were efficiently suppressed by plasmid-borne tRNAtrp suppressors cognate to each nonsense triplet. Introduction of a compatible RF 1 plasmid competed at UAG and UAA but not UGA codons. An RF2 expressing plasmid competed at UAA and UGA but had little effect at UAG. Release factor competition against weak suppressors was measured using combinations of noncognate suppressors and nonsense codons. In each case, release factor plasmids behaved identically towards poorly suppressed codons as they did when the same codons were efficiently suppressed. The implications for these studies on the role of release factors in nonsense suppression context effects are discussed.  相似文献   

17.
Sex-ratio drive, which results in males siring female-biased progeny, has been reported in several Drosophila species, including D. simulans. It is caused by X-linked drivers that prevent the production of Y-bearing sperm. In natural populations of D. simulans, the drivers are usually cryptic, because their spread has elicited the evolution of drive suppressors. We investigated autosomal suppression in flies from Madagascar, Réunion and Kenya. Autosomal suppressors were found in all three places, indicating that they are a regular component of drive suppression over this geographic area, where strong Y-linked suppressors also occur. These suppressors were suspected of being polymorphic in Madagascar and Réunion and proved to be polymorphic in Kenya. We developed a model simulating the evolution of neutral autosomal suppressors in order to explore the effects of the number of suppressor genes, their relative strength and the co-occurrence of Y-linked suppressors. The most interesting prediction of the model is that when suppression is multigenic, suppressor loci can remain polymorphic despite the absence of balancing selection if an equal sex-ratio is restored in the population before the suppressor alleles become fixed at all loci. The model also emphasises the importance of the sterility of distorters sons in suppressor dynamics.  相似文献   

18.
LTE1 encodes a homolog of GDP-GTP exchange factors for the Ras superfamily and is required at low temperatures for cell cycle progression at the stage of the termination of M phase inSaccharomyces cerevisiae. We isolated extragenic suppressors which suppress the cold sensitivity oflte1 cells and confer a temperature-sensitive phenotype on cells. Cells mutant for the suppressor alone were arrested at telophase at non-permissive temperatures and the terminal phenotype was almost identical to that oflte1 cells at non-permissive temperatures. Genetic analysis revealed that the suppressor is allelic toCDC15, which encodes a protein kinase. Thecdc15 mutations thus isolated were recessive with regard to the temperature-sensitive phenotype and were dominant with respect to suppression oflte1. We isolatedCDC14 as a low-copy-number suppressor ofcdc15-rlt1.CDC14 encodes a phosphotyrosine phosphatase (PTPase) and is essential for termination of M phase. An extra copy ofCDC14 suppressed the temperature sensitivity ofcdc15-rlt1 cells, but not that ofcdc15-1 cells. In addition, some residues that are essential for the Cdc14 PTPase activity were found to be non-essential for the suppression. These results strongly indicate that Cdc14 possesses dual functions; PTPase activity is needed for one function but not for the other. We postulate that the cooperative action of Cdc14 and Cdc15 plays an essential role in the termination of M phase.  相似文献   

19.
Informational suppressors and antisuppressors have been previously isolated in Podospora anserina, and their properties suggest that they could be ribosomal mutants involved in the control of translational fidelity. In this paper we present results concerning relationships between these mutants and paromomycin, an aminoglycoside antibiotic known to stimulate translational errors. The mutants were found to manifest an altered growth sensitivity to this drug as compared with the wild-type strain: Most of the suppressors were more sensitive and, in contrast, most of the antisuppressors were more resistant to paromomycin. Moreover, phenotypic suppression of an auxotrophic mutation by paromomycin was observed only if a suppressor and an antisuppressor had been introduced in the strain. These results suggest that ambiguity levels could be altered in the suppressor and antisuppressor strains. In addition, paromomycin was shown to abolish sporulation, which suggests relationships between mistranslation and a step of cellular differentiation.This work was supported by a DGRST grant and by a NATO grant.  相似文献   

20.
Mazur  A. M.  Kholod  N. S.  Seit-Nebi  A.  Kisselev  L. L. 《Molecular Biology》2002,36(1):104-109
Termination of protein synthesis (hydrolysis of the last peptidyl-tRNA on the ribosome) takes place when the ribosomal A site is occupied simultaneously by one of the three stop codons and by a class-1 translation termination factor. The existing procedures to measure the functional activity of this factor both in vitro and in vivo have serious drawbacks, the main of which are artificial conditions for in vitro assays, far from those in the cell, and indirect evaluation of activity in in vivo systems. A simple reliable and sensitive system to measure the functional activity of class-1 translation termination factors could considerably expedite the study of the terminal steps of protein synthesis, at present remaining poorly known, especially in eukaryotes. We suggest a novel system to test the functional activity in vitro using native functionally active mRNA, rather than tri-, tetra-, or oligonucleotides as before. This mRNA is specially designed to contain one of the three terminating (stop) codons within the coding nucleotide sequence. Plasmids have been generated that carry the genes of suppressor tRNAs each of which is specific toward one of the three stop codons. They were shown to support normal synthesis of a reporter protein, luciferase, by reading through the stop codon within the coding mRNA sequence. We have demonstrated that human class-1 translation termination factor eRF1 is able to compete with suppressor tRNA for a stop codon and to completely prevent its suppressive effect at a sufficient concentration. Forms of eRF1 with point mutations in functionally essential regions have lower competitive ability, demonstrating the sensitivity of the method to the eRF1 structure. The enzymatic reaction catalyzed by the full-size reporter protein is accompanied by emission of light quanta. Therefore, competition between suppressor tRNA and eRF1 can be measured using a luminometer, and this allows precise kinetic measurements in a continuous automatic mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号