首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Multiple Ag peptides (MAPs) containing eight proteolipid protein (PLP)(139-151) peptides arranged around a dendrimeric branched lysine core were used to influence the expression and development of relapsing experimental allergic encephalomyelitis (EAE) in SJL mice. The PLP(139-151) MAPs were very efficient agents in preventing the development of clinical disease when administered after immunization with the PLP(139-151) monomeric encephalitogenic peptide in CFA. The treatment effect with these MAPs was peptide specific; irrelevant multimeric peptides such as guinea pig myelin basic protein GPBP(72-84) MAP (a dendrimeric octamer composed of the 72-84 peptide) and PLP(178-191) MAP (a dendrimeric octamer composed of the PLP(178-191) peptide) had no treatment effect on PLP(139-151)-induced EAE. PLP(139-151) MAP treatment initiated after clinical signs of paralysis also altered the subsequent course of EAE; it limited developing signs of paralysis and effectively limited the severity and number of disease relapses in MAP-treated mice over a 60-day observation period. PLP(139-151) MAP therapy initiated before disease onset acts to limit the numbers of Th17 and IFN-gamma-producing cells that enter into the CNS. However, Foxp3(+) cells entered the CNS in numbers equivalent for nontreated and PLP(139-151) MAP-treated animals. The net effect of PLP(139-151) MAP treatment dramatically increases the ratio of Foxp3(+) cells to Th17 and IFN-gamma-producing cells in the CNS of PLP(139-151) MAP-treated animals.  相似文献   

2.
Relapsing experimental autoimmune encephalomyelitis (R-EAE) is a CD4+ T cell-mediated demyelinating disease model for multiple sclerosis. Myelin destruction during the initial relapsing phase of R-EAE in SJL mice initiated by immunization with the proteolipid protein (PLP) epitope PLP139-151 is associated with activation of T cells specific for the endogenous, non-cross-reactive PLP178-191 epitope (intramolecular epitope spreading), while relapses in R-EAE induced with the myelin basic protein (MBP) epitope MBP84-104 are associated with PLP139-151-specific responses (intermolecular epitope spreading). Here, we demonstrate that T cells specific for endogenous myelin epitopes play the major pathologic role in mediating clinical relapses. T cells specific for relapse-associated epitopes can serially transfer disease to naive recipients and are demonstrable in the CNS of mice with chronic R-EAE. More importantly, induction of myelin-specific tolerance to relapse-associated epitopes, by i.v. injection of ethylene carbodiimide-fixed peptide-pulsed APCs, either before disease initiation or during remission from acute disease effectively blocks the expression of the initial disease relapse. Further, blockade of B7-1-mediated costimulation with anti-B7-1 F(ab) during disease remission from acute PLP139-151-induced disease prevents clinical relapses by inhibiting activation of PLP178-191-specific T cells. The protective effects of anti-B7-1 F(ab) treatment are long-lasting and highly effective even when administered following the initial relapsing episode wherein spreading to a MBP epitope (MBP84-104) is inhibited. Collectively, these data indicate that epitope spreading is B7-1 dependent, plays a major pathologic role in disease progression, and follows a hierarchical order associated with the relative encephalitogenic dominance of the myelin epitopes (PLP139-151 > PLP178-191 > MBP84-104).  相似文献   

3.
Our previous studies demonstrated that oligomeric recombinant TCR ligands (RTL) can treat clinical signs of experimental autoimmune encephalomyelitis (EAE) and induce long-term T cell tolerance against encephalitogenic peptides. In the current study, we produced a monomeric I-A(s)/PLP 139-151 peptide construct (RTL401) suitable for use in SJL/J mice that develop relapsing disease after injection of PLP 139-151 peptide in CFA. RTL401 given i.v. or s.c. but not empty RTL400 or free PLP 139-151 peptide prevented relapses and significantly reduced clinical severity of EAE induced by PLP 139-151 peptide in SJL/J or (C57BL/6 x SJL)F(1) mice, but did not inhibit EAE induced by PLP 178-191 or MBP 84-104 peptides in SJL/J mice, or MOG 35-55 peptide in (C57BL/6 x SJL/J)F(1) mice. RTL treatment of EAE caused stable or enhanced T cell proliferation and secretion of IL-10 in the periphery, but reduced secretion of inflammatory cytokines and chemokines. In CNS, there was a modest reduction of inflammatory cells, reduced expression of very late activation Ag-4, lymphocyte function-associated Ag-1, and inflammatory cytokines, chemokines, and chemokine receptors, but enhanced expression of Th2-related factors, IL-10, TGF-beta3, and CCR3. These results suggest that monomeric RTL therapy induces a cytokine switch that curbs the encephalitogenic potential of PLP 139-151-specific T cells without fully preventing their entry into CNS, wherein they reduce the severity of inflammation. This mechanism differs from that observed using oligomeric RTL therapy in other EAE models. These results strongly support the clinical application of this novel class of peptide/MHC class II constructs in patients with multiple sclerosis who have focused T cell responses to known encephalitogenic myelin peptides.  相似文献   

4.
PLP is the major protein constituent of central nervous system myelin. We have previously shown that SJL/J (H-2s) mice develop an acute form of EAE after immunization with PLP. The purpose of the present study was to identify an encephalitogenic determinant of PLP for SJL mice. We immunized SJL/J mice with a synthetic peptide identical to residues 130-147 QAHSLERVCHCLGKWLGH of murine PLP, a sequence having an amphipathic alpha-helical conformation. Although it did not induce disease, an overlapping peptide containing residues 139-154 HCLGKWLGHPDKFVGI was encephalitogenic. Immunization with this peptide induced severe clinical and histologic EAE in 3 of 20 mice. T cell enriched ILN cells from these mice responded specifically (3H-thymidine incorporation) to this peptide as well as to shorter analogues of this domain containing serine in place of cysteine at residues 138 and 140. Immunization with the serine-substituted PLP peptides 137-151 VSHSLGKWLGHPDKF and 139-151 HSLGKWLGHPDKF induced severe, acute EAE in 4 of 9 and 15 of 15 SJL mice, respectively, and their T cell enriched ILN cells responded not only to the analogues, but also to the native PLP sequence 139-154. These results indicate that residues 139-151 of murine PLP is an encephalitogenic determinant for SJL mice. Furthermore, like the PLP encephalitogenic domain for SWR (H-2q) mice, this determinant is also a T cell epitope with a coding sequence at the end of an exon.  相似文献   

5.
Relapsing experimental autoimmune encephalomyelitis (R-EAE) can be induced in SJL/J mice by immunization with spinal cord homogenate and adjuvant. The specific Ag(s) responsible for acute disease and subsequent relapses in this model is unknown. Myelin basic protein (BP), an encephalitogenic peptide of BP (BP 87-99), and proteolipid protein (PLP) can each induce R-EAE in SJL/J mice, and a peptide of PLP (PLP 139-151) has been reported to induce acute EAE. To determine the encephalitogens in cord-immunized mice with R-EAE, the in vitro proliferative responses of lymph node cells (LNC) and central nervous system mononuclear cells to BP, BP peptides, and PLP peptides were examined during acute EAE and during relapses. LNC responded only to PLP peptides 139-151 and 141-151 and did not respond to BP or its peptides during acute or chronic disease. Central nervous system mononuclear cells also preferentially responded to PLP 139-151 and 141-151 during acute and relapsing disease. A PLP 139-151 peptide-specific Th cell line was selected from LNC of cord-immunized donors. Five million peptide-specific line cells transferred severe relapsing demyelinating EAE to naive recipients. We conclude that PLP peptide 139-151 is the major encephalitogen for R-EAE in cord-immunized SJL/J mice. We demonstrate for the first time that Th cells specific for this peptide are sufficient to transfer relapsing demyelinating EAE. The predominance of a PLP immune response rather than a BP response in SJL/J mice suggests that genetic background may determine the predominant myelin Ag response in human demyelinating diseases such as multiple sclerosis.  相似文献   

6.
Synthetic peptides of proteolipid protein (PLP) were screened for their ability to induce experimental autoimmune encephalomyelitis (EAE) in SJL/J, PL/J, and (SJL x PL)F1 mice, and T cell lines were selected by stimulation of lymph node cells with PLP peptides. PLP 141-151 was found to be less encephalitogenic in SJL/J mice than PLP 139-151, due to deletion of two amino acids from the amino-terminal end. PLP 139-151 immunization induced relapsing EAE in SJL/J and F1 mice but not PL/J mice. In contrast, PLP 43-64 induced relapsing EAE in PL/J and F1 mice but not SJL/J mice. F1 T cell lines specific for either PLP 43-64 or PLP 139-151 adoptively transferred demyelinating EAE to naive F1 recipients. Haplotypes H-2s and H-2u appear to be immunologically co-dominant in F1 mice in the PLP EAE system, which differs from the H-2u dominance in F1 mice in the myelin basic protein EAE system. The identification of a PLP peptide that is encephalitogenic in PL/J mice, in addition to the previous demonstration of PLP peptides that are encephalitogenic for SWR mice (PLP 103-116) and SJL/J mice (PLP 139-151), lends support to a role for PLP as a target Ag in autoimmune demyelinating diseases.  相似文献   

7.
Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic progressive, CD4(+) T cell-mediated demyelinating disease. Myelin damage is initiated by T cell responses to virus persisting in CNS APCs, and progressive demyelinating disease (50 days postinfection) is perpetuated by myelin epitope-specific CD4(+) T cells activated by epitope spreading. We developed an infectious model of molecular mimicry by inserting a sequence encompassing the immunodominant myelin epitope, proteolipid protein (PLP) 139-151, into the coding region of a nonpathogenic TMEV variant. PLP139-TMEV-infected mice developed a rapid onset paralytic inflammatory, demyelinating disease paralleled by the activation of PLP139-151-specific CD4(+) Th1 responses within 10-14 days postinfection. The current studies demonstrate that the early onset demyelinating disease induced by PLP139-TMEV is the direct result of autoreactive PLP139-151-specific CD4(+) T cell responses. PLP139-151-specific CD4(+) T cells from PLP139-TMEV-infected mice transferred demyelinating disease to naive recipients and PLP139-151-specific tolerance before infection prevented clinical disease. Finally, infection with the mimic virus at sites peripheral to the CNS induced early demyelinating disease, suggesting that the PLP139-151-specific CD4(+) T cells could be activated in the periphery and traffic to the CNS. Collectively, infection with PLP139-151 mimic encoding TMEV serves as an excellent model for molecular mimicry by inducing pathologic myelin-specific CD4(+) T cells via a natural virus infection.  相似文献   

8.
Myelin proteolipid protein (PLP) contains 2 immunodominant encephalitogenic epitopes in SJL mice, namely PLP residues 139–151 and 178–191. DM20, a minor isoform of PLP, lacks residues 116–150 and consequently contains only the single major encephalitogenic epitope 178–191. However, it has been found previously that bovine DM20 is not encephalitogenic in SJL mice. Since residue 188 within peptide 178–191 is phenylalanine (F) in murine DM20 and alanine (A) in bovine DM20, we tested the effect of this difference on the immune responses and induction of EAE. SJL mice were immunized with either highly purified murine or bovine DM20. Residues 178–191 were found to be immunodominant for each, but only murine and not bovine DM20 was encephalitogenic. A synthetic peptide corresponding to the murine 178–191 sequence (F188) was also encephalitogenic, whereas the peptide corresponding to the bovine sequence (A 188) was not. Both F188 and A188 bind with high affinity to I-As and both are recognized by the SJL T cell repertoire. A188-specific T cell lines reacted to both A188 and F188, but F188-specific T cell lines were not stimulated by A188. F188-specific T cell lines produced mRNA for the Thl cytokines IL2 and IFN, and, in passive transfer experiments, were encephalitogenic upon stimulation with F188, but not A188. In contrast, A188-specific T cell lines produced mRNA for IL4, IL5 and IL10, in addition to IL2 and IFN, and were not encephalitogenic after stimulation with either F188 or A188. Cotransfer of A188-specific T cell lines with F188-specific T cell lines resulted in protection from EAE. Thus, A188 induces a functionally different phenotype of T cells from that induced by F188. Taken together these data suggest that the failure of bovine DM20 to induce EAE may be attributable to induction of protective rather than pathogenic T cells by the immunodominant epitope.  相似文献   

9.
PLP 139-151(S) is the major encephalitogenic epitope of PLP in the SJL/J mouse. CD4+ T cells specific for PLP 139-151(S) induce a relapsing-remitting form of EAE which is similar to the human demyelinating disease MS in both clinical course and histopathology. We are interested in events involved in activation of autoreactive T cells and how to specifically regulate these immune response to both prevent and treat ongoing demyelinating disease. In the current study, we examined the effect of both amino acid substitutions and deletions in the native PLP 139-151(S) peptide to identify which residues are critical for immunogenicity and encephalitogenicity. Conservative and nonconservative substitutions at position 145 diminished or completely destroyed the encephalitogenic potential of the peptide without affecting the ability to recall a proliferative response in lymph node T cells primed with the native PLP 139-151(S) peptide indicating an interesting dichotomy between ability to induce T cell proliferation and ability to induce active clinical disease. In addition, tryptophan at position 144 was identified as a critical TCR contact site as a peptide containing an alanine for tryptophan at this position (A144) primed a unique population of T cells which did not cross react with the native PLP 139-151(S). In addition, A144 was unable to stimulate PLP 139-151(S)-specific T cells in vitro or to induce active relapsing EAE in vivo. The significance of these results to the potential development of new strategies for preventing and treating T cell-mediated autoimmune diseases is discussed.Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

10.
Chronic progression of two T cell-mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139-151-specific T cells in SJL mice undergoing PLP178-191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178-191-induced R-EAE shows that only F4/80-CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139-151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139-151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.  相似文献   

11.
Detection of autoreactive T cells using MHC II tetramers is difficult because of the low affinity of their TCR. We have generated a class II tetramer using the IA(s) class II molecule combined with an autoantigenic peptide from myelin proteolipid protein (PLP; PLP(139-151)) and used it to analyze myelin PLP(139-151)-reactive T cells. Using monomers and multimerized complexes labeled with PE, we confirmed the specificity of the reagent by bioassay and flow cytometry. The IA(s) tetramers stimulated and stained the PLP(139-151)-specific 5B6 TCR transgenic T cells and a polyclonal cell line specific for PLP(139-151), but not a control T cell line specific for PLP(178-191). We used this reagent to optimize conditions to detect low affinity autoreactive T cells. We found that high pH ( approximately 8.0) and neuraminidase treatment enhances the staining capacity of PLP(139-151) tetramer without compromising specificity. Furthermore, we found that induction of calcium fluxing by tetramers in T cells may be used as a sensitive measure to detect autoreactive T cells with a low affinity. Taken together, the data show that the tetrameric reagent binds and stimulates PLP(139-151)-reactive T cells with specificity. This tetrameric reagent will be useful in studying the evolution of PLP(139-151)-specific repertoire in naive mice and its expansion during the autoimmune disease experimental autoimmune encephalomyelitis.  相似文献   

12.
To determine if the Ag that induces an autoimmune disease influences parental MHC haplotype molecule expression in situ in MHC heterozygotes, acute experimental allergic encephalomyelitis (EAE) was induced with different encephalitogenic peptides in (SJL/J x SWR)F1 mice. The mice were sensitized with either a synthetic peptide corresponding to mouse myelin proteolipid protein (PLP) residues 103-116 YKTTICGKGLSATV which induces EAE in SWR (H-2q), but not SJL/J (H-2s) mice or a synthetic peptide corresponding to PLP residues 139-151 HCLGKWLGHPDKF which is encephalitogenic in SJL/J but not SWR mice. Mice were killed when they were moribund or at 30 days after sensitization. Twelve of 18 F1 mice given PLP peptide 103-116 and 12 of 17 mice given PLP peptide 139-151 developed EAE within 2 to 3 wk after sensitization. Cryostat sections of brain samples from F1 and parental mice were immunostained with a panel of mAb identifying H-2s and H-2q class I and II MHC molecules. In brains of controls, class I MHC molecules were expressed on choroid plexus, endothelial cells, and microglia whereas class II MHC molecules were absent. In EAE lesions, class I and II MHC molecules were present on inflammatory and parenchymal cells, but the degree of parental haplotype molecule expression did not vary with the different peptide Ag tested. Thus, in (SJL/J x SWR)F1 mice, myelin PLP peptides 103-116 and 139-151 are co-dominant Ag with respect to clinical and histologic disease and parental haplotype MHC molecule expression. We propose a unifying hypothesis consistent with these results and previous observations of differential Ia expression in (responder x non-responder)F1 guinea pigs. We suggest that MHC molecules may bind locally derived peptide Ag in inflammatory sites and that these interactions influence levels of MHC haplotype molecules on APC.  相似文献   

13.
Multiple sclerosis is an inflammatory disease of the CNS that involves immune reactivity against myelin oligodendrocyte glycoprotein (MOG), a type I transmembrane protein located at the outer surface of CNS myelin. The epitope MOG92-106 is a DR4-restricted Th cell epitope and a target for demyelinating autoantibodies. In this study, we show that the immune response elicited by immunization with this epitope is qualitatively different from immune responses induced by the well-defined epitopes myelin basic protein (MBP) 84-96 and proteolipid protein (PLP) 139-151. Mice with MOG92-106-, but not with MBP84-96- or PLP139-151-induced experimental autoimmune encephalomyelitis developed extensive B cell reactivity against secondary myelin Ags. These secondary Abs were directed against a set of encephalitogenic peptide Ags derived from MBP and PLP as well as a broad range of epitopes spanning the complete MBP sequence. The observed diversification of the B cell reactivity represents a simultaneous spread toward a broad range of antigenic epitopes and differs markedly from T cell epitope spreading that follows a sequential cascade. The Abs were of the isotypes IgG1 and IgG2b, indicating that endogenously recruited B cells receive help from activated T cells. In sharp contrast, B cell reactivity in MBP84-96- and PLP139-151-induced experimental autoimmune encephalomyelitis was directed against the disease-inducing Ag only. These data provide direct evidence that the nature of the endogenously acquired immune reactivity during organ-specific autoimmunity critically depends on the disease-inducing Ag. They further demonstrate that the epitope MOG92-106 has the specific capacity to induce a widespread autoimmune response.  相似文献   

14.
Proteolipid protein (PLP) is the major protein of central nervous system myelin. SJL (H-2s) mice immunized with a synthetic peptide corresponding to PLP residues 139-151 develop acute EAE. In this study, 6 IAs-restricted, CD4+, TCR alpha beta-bearing T cell clones were derived from SJL/J mice after immunization with this synthetic peptide. The clones responded in in vitro proliferative assays to the whole PLP molecule and to PLP peptide 139-151, but not to irrelevant Ag. They also responded to truncated and overlapping forms of the peptide but five distinct reactivity patterns were observed using these peptides. A panel of anti-TCR V beta mAb and TCR V beta-specific cDNA probes were used to determine the TCR V beta usage of the clones. Five clones were found to use four different V beta (V beta 2, V beta 6, V beta 10, or V beta 17a), whereas the V beta on the sixth clone could not be identified. Five of the clones induced EAE of varying severity upon adoptive transfer into naive syngeneic mice or mice pretreated with irradiation and pertussis and one clone was nonencephalitogenic. The Ag-specific proliferative response of all but the nonencephalitogenic clone could be blocked by an anti-CD4 mAb. Thus, the clones showed differences in their fine specifity, TCR V beta usage, sensitivity to antibody blocking, and encephalitogenic potency. These data demonstrate that the T cell response to the encephalitogenic PLP peptide 139-151 is heterogeneous.  相似文献   

15.
A role for CD4(+)CD25(+) regulatory T cells (Tregs) in the control of allergic diseases has been postulated. We developed a mouse model in which anaphylaxis is induced in SJL mice by immunization and challenge with the fragment of self myelin proteolipid protein (PLP)(139-151), that is not expressed in the thymus, but not with fragment 178-191 of the same protein, that is expressed in the thymus. In this study, we show that resistance to anaphylaxis is associated with naturally occurring CD4(+)CD25(+) Tregs specific for the self peptide expressed in the thymus. These cells increase Foxp3 expression upon Ag stimulation and suppress peptide-induced proliferation of CD4(+)CD25(-) effector T cells. Depletion of Tregs with anti-CD25 in vivo significantly diminished resistance to anaphylaxis to PLP(178-191), suggesting an important role for CD4(+)CD25(+) Tregs in preventing the development of allergic responses to this thymus-expressed peptide. These data indicate that naturally occurring CD4(+)CD25(+) Tregs specific for a peptide expressed under physiological conditions in the thymus are able to suppress the development of a systemic allergic reaction to self.  相似文献   

16.
Multiple sclerosis (MS) is an autoimmune CNS demyelinating disease in which infection may be an important initiating factor. Pathogen-induced cross-activation of autoimmune T cells may occur by molecular mimicry. Infection with wild-type Theiler's murine encephalomyelitis virus induces a late-onset, progressive T cell-mediated demyelinating disease, similar to MS. To determine the potential of virus-induced autoimmunity by molecular mimicry, a nonpathogenic neurotropic Theiler's murine encephalomyelitis virus variant was engineered to encode a mimic peptide from protease IV of Haemophilus influenzae (HI), sharing 6 of 13 aa with the dominant encephalitogenic proteolipid protein (PLP) epitope PLP(139-151). Infection of SJL mice with the HI mimic-expressing virus induced a rapid-onset, nonprogressive paralytic disease characterized by potent activation of self-reactive PLP(139-151)-specific CD4(+) Th1 responses. In contrast, mice immunized with the HI mimic-peptide in CFA did not develop disease, associated with the failure to induce activation of PLP(139-151)-specific CD4(+) Th1 cells. However, preinfection with the mimic-expressing virus before mimic-peptide immunization led to severe disease. Therefore, infection with a mimic-expressing virus directly initiates organ-specific T cell-mediated autoimmunity, suggesting that pathogen-delivered innate immune signals may play a crucial role in triggering differentiation of pathogenic self-reactive responses. These results have important implications for explaining the pathogenesis of MS and other autoimmune diseases.  相似文献   

17.
Proteolipid protein (PLP) is the most abundant protein of CNS myelin, and is posttranslationally acylated by covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage. Two of the acylation sites are within epitopes of PLP that are encephalitogenic in SJL/J mice (PLP(104-117) and PLP(139-151)) and against which increased immune responses have been detected in some multiple sclerosis patients. It is known that attachment of certain types of lipid side chains to peptides can result in their enhanced immunogenicity. The aim of this study was to determine whether thioacylated PLP peptides, as occur in the native protein, are more immunogenic than their nonacylated counterparts, and whether thioacylation influences the development of autoreactivity and experimental autoimmune encephalomyelitis. The results show that in comparison with nonacylated peptides, thioacylated PLP lipopeptides can induce greater T cell and Ab responses to both the acylated and nonacylated peptides. They also enhanced the development and chronicity of experimental autoimmune encephalomyelitis. Synthetic peptides in which the fatty acid was attached via an amide linkage at the N terminus were not encephalitogenic, and they induced greater proportions of CD8+ cells in initial in vitro stimulation. Therefore, the lability and the site of the linkage between the peptide and fatty acid may be important for induction of encephalitogenic CD4+ T cells. These results suggest that immune responses induced by endogenous thioacylated lipopeptides may contribute to the immunopathogenesis of chronic experimental demyelinating diseases and multiple sclerosis.  相似文献   

18.
19.
Direct measurements of the frequency and the cytokine signature of the neuroantigen-specific effector cells in experimental allergic encephalomyelitis (EAE) are a continuing challenge. This is true for lymphoid tissues, and more importantly, for the CNS itself. Using enzyme-linked immunospot analysis (ELISPOT) assays, we followed proteolipid protein (PLP) 139--151-specific T cells engaged by active immunization of SJL mice. The total numbers of PLP(139--151)-specific CD4 cells were highest before disease onset. At this time, these cells resided in lymphoid and nonlymphoid tissues, but were not detected in the CNS. While the PLP(139--151)-specific cells reached high frequencies in the CNS during clinical EAE, in absolute numbers, less than 20% of them were present in the target organ, with the majority residing in the periphery throughout all stages of the disease. The numbers of PLP(139--151)-specific cells gradually declined in both compartments with time. While eventually this first wave of effector cells completely disappeared from the CNS, PLP(178--191)-specific cells became engaged, being detected first in the CNS. These data suggest that throughout all stages of EAE, the effector cells in the CNS are recruited from a vast peripheral reservoir, and that the second wave of effector cells is engaged while the first wave undergoes exhaustion.  相似文献   

20.
Murine experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated autoimmune disorder directed against myelin proteins within the CNS. We propose that variant peptides containing amino acid substitutions at MHC anchor residues will provide a unique means to controlling the polyclonal autoimmune T cell response. In this study, we have identified an MHC variant of proteolipid protein (PLP) 139-151 (145D) that renders PLP(139-151)-specific T cell lines anergic in vitro, as defined by a significant reduction in proliferation and IL-2 production following challenge with wild-type peptide. In vivo administration of 145D before challenge with PLP(139-151) results in a significant reduction in disease severity and incidence. Importantly, we demonstrate the ability of an MHC variant peptide to ameliorate established EAE. An advantage to this treatment is that the MHC variant peptide does not induce an acute hypersensitivity reaction. This is in contrast to previous work in the PLP(139-151) model demonstrating that anaphylactic shock resulting in death occurs upon rechallenge with the encephalitogenic peptide. Taken together, these data demonstrate the effectiveness of MHC anchor-substituted peptides in the treatment of EAE and suggest their utility in the treatment of other autoimmune disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号