首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   

2.

Cel6D from Paenibacillus barcinonensis is a modular cellobiohydrolase with a novel molecular architecture among glycosyl hydrolases of family 6. It contains an N-terminal catalytic domain (family 6 of glycosyl hydrolases (GH6)), followed by a fibronectin III-like domain repeat (Fn31,2) and a C-terminal family 3b cellulose-binding domain (CBM3b). The enzyme has been identified and purified showing catalytic activity on cellulosic substrates and cellodextrins, with a marked preference for phosphoric acid swollen cellulose (PASC). Analysis of mode of action of Cel6D shows that it releases cellobiose as the only hydrolysis product from cellulose. Kinetic parameters were determined on PASC showing a K m of 68.73 mg/ml and a V max of 1.73 U/mg. A series of truncated derivatives of Cel6D have been constructed and characterized. Deletion of CBM3b caused a notable reduction in hydrolytic activity, while deletion of the Fn3 domain abolished activity, as the isolated GH6 domain was not active on any of the substrates tested. Mutant enzymes Cel6D-D146A and Cel6D-D97A were constructed in the residues corresponding to the putative acid catalyst and to the network for the nucleophilic attack. The lack of activity of the mutant enzymes indicates the important role of these residues in catalysis. Analysis of cooperative activity of Cel6D with cellulases from the same producing P. barcinonensis strain reveals high synergistic activity with processive endoglucanase Cel9B on hydrolysis of crystalline substrates. The characterized cellobiohydrolase can be a good contribution for depolymerization of cellulosic substrates and for the deconstruction of native cellulose.

  相似文献   

3.
A new cellulosomal protein from Clostridium cellulolyticum Cel9M was characterized. The protein contains a catalytic domain belonging to family 9 and a dockerin domain. Cel9M is active on carboxymethyl cellulose, and the hydrolysis of this substrate is accompanied by a decrease in viscosity. Cel9M has a slight, albeit significant, activity on both Avicel and bacterial microcrystalline cellulose, and the main soluble sugar released is cellotetraose. Saccharification of bacterial microcrystalline cellulose by Cel9M in association with two other family 9 enzymes from C. cellulolyticum, namely, Cel9E and Cel9G, was measured, and it was found that Cel9M acts synergistically with Cel9E. Complexation of Cel9M with the mini-CipC1 containing the cellulose binding domain, the X2 domain, and the first cohesin domain of the scaffoldin CipC of the bacterium did not significantly increase the hydrolysis of Avicel and bacterial microcrystalline cellulose.  相似文献   

4.
Liu Y  Zhang J  Liu Q  Zhang C  Ma Q 《Current microbiology》2004,49(4):234-238
A thermophilic bacterial strain GXN151 which could degrade Avicel efficiently was isolated and identified as Bacillus licheniformis. A genomic library of GXN151 was constructed and two novel endoglucanase genes designated cel9A and cel12A were isolated by screening the library on carboxylmethyl cellulase indicator plates. The analysis of amino acid sequences deduced from the genes indicated that Cel9A consisted of a catalytic domain belonging to glycosyl hydrolase family 9, a linker domain, and a carbohydrate binding module family 3 from N-terminal to C-terminal; Cel12A had only one catalytic domain belonging to glycosyl hydrolase family 12. The combinations of Cel9A and Cel12A produced by the recombinant E. coli exhibited synergistic action against substrates of carboxylmethyl cellulose as well as Avicel.  相似文献   

5.
Cost-effective release of fermentable sugars from non-food biomass through biomass pretreatment/enzymatic hydrolysis is still the largest obstacle to second-generation biorefineries. Therefore, the hydrolysis performance of 21 bacterial cellulase mixtures containing the glycoside hydrolase family 5 Bacillus subtilis endoglucanase (BsCel5), family 9 Clostridium phytofermentans processive endoglucanase (CpCel9), and family 48 C. phytofermentans cellobiohydrolase (CpCel48) was studied on partially ordered low-accessibility microcrystalline cellulose (Avicel) and disordered high-accessibility regenerated amorphous cellulose (RAC). Faster hydrolysis rates and higher digestibilities were obtained on RAC than on Avicel. The optimal ratios for maximum cellulose digestibility were dynamic for Avicel but nearly fixed for RAC. Processive endoglucanase CpCel9 was the most important for high cellulose digestibility regardless of substrate type. This study provides important information for the construction of a minimal set of bacterial cellulases for the consolidated bioprocessing bacteria, such as Bacillus subtilis, for converting lignocellulose to biocommodities in a single step.  相似文献   

6.
A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulosome, a noncomplexed cellulase mixture with the same catalytic components, and a commercial fungal enzyme mixture were investigated on low-accessibility recalcitrant Avicel and high-accessibility regenerated amorphous cellulose (RAC). The cell-bound cellulosome exhibited 4.5- and 2.3-fold-higher hydrolysis ability than cell-free cellulosome on Avicel and RAC, respectively. The cellulosome-microbe synergy was not completely explained by the removal of hydrolysis products from the bulk fermentation broth by free-living cells and appeared to be due to substrate channeling of long-chain hydrolysis products assimilated by the adjacent cells located in the boundary layer. Our results implied that long-chain hydrolysis products in the boundary layer may inhibit cellulosome activity to a greater extent than the short-chain products in bulk phase. The findings that cell-bound cellulosome expedited the microbial cellulose utilization rate by 2.3- to 4.5-fold would help in the development of better consolidated bioprocessing microorganisms (e.g., B. subtilis) that can hydrolyze recalcitrant cellulose rapidly at low secretory cellulase levels.  相似文献   

7.
Tsai CF  Qiu X  Liu JH 《Anaerobe》2003,9(3):131-140
Cellulase family and some other glycosyl hydrolases of anaerobic fungi inhabiting the digestive tract of ruminants are believed to form an enzyme complex called cellulosome. Study of the individual component of cellulosome may shed light on understanding the organization of this complex and its functional mechanism. We have analysed the primary sequences of two cellulase clones, cel5B and cel6A, isolated from the cDNA library of ruminal fungus, Piromyces rhizinflata strain 2301. The deduced amino acid sequences of the catalytic domain of Cel5B, encoded by cel5B, showed homology with the subfamily 4 of the family 5 (subfamily 5(4)) of glycosyl hydrolases, while cel6A encoded Cel6A belonged to family 6 of glycosyl hydrolases. Phylogenetic tree analysis suggested that the genes of subfamily 5(4) glycosyl hydrolases of P. rhizinflata might have been acquired from rumen bacteria. Cel5B and Cel6A were modular enzymes consisting of a catalytic domain and dockerin domain(s), but not a cellulose binding domain. The occurrence of dockerin domains indicated that both enzymes were cellulosome components. The catalytic domain of the Cel5B (Cel5B') and Cel6A (Cel6A') recombinant proteins were purified. The optimal activity conditions with carboxymethyl cellulose (CMC) as the substrate were pH 6.0 and 50 degrees C for Cel5B', and pH 6.0 and 37-45 degrees C for Cel6A'. Both Cel5B' and Cel6A' exhibited activity against CMC, barley beta-glucan, Lichenan, and oat spelt xylan. Cel5B' could also hydrolyse p-nitrophenyl-beta-d-cellobioside, Avicel and filter paper while Cel6A' did not show any activity on these substrates. It is apparent that Cel6A' acted as an endoglucanase and Cel5B' possessed both endoglucanase and exoglucanase activities. No synergic effect was observed for these recombinant enzymes in vitro on Avicel and CMC.  相似文献   

8.
A bacterial strain Paenibacillus polymyxa GS01 was isolated from the interior of the roots of Korean cultivars of ginseng (Panax ginseng C. A. Meyer). The cel44C-man26A gene was cloned from this endophytic strain. This 4,056-bp gene encodes for a 1,352-aa protein which, based on BLAST search homologies, contains a glycosyl hydrolase family 44 (GH44) catalytic domain, a fibronectin domain type 3, a glycosyl hydrolase family 26 (GH26) catalytic domain, and a cellulose-binding module type 3. The multifunctional enzyme domain GH44 possesses cellulase, xylanase, and lichenase activities, while the enzyme domain GH26 possesses mannanase activity. The Cel44C enzyme expressed in and purified from Escherichia coli has an optimum pH of 7.0 for cellulase and lichenase activities, but is at an optimum pH of 5.0 for xylanase and mannanase activities. The optimum temperature for enzymatic activity was 50°C for all substrates. No detectable enzymatic activity was detected for the Cel44C-Man26A mutants E91A and E222A. These results suggest that the amino acid residues Glu91 and Glu222 may play an important role in the glycosyl hydrolases activity of Cel44C-Man26A.  相似文献   

9.
Cryptococcus sp. S-2 carboxymethyl cellulase (CSCMCase) is active in the acidic pH and lacks a binding domain. The absence of the binding domain makes the enzyme inefficient against insoluble cellulosic substrates. To enhance its binding affinity and its cellulolytic activity to insoluble cellulosic substrates, cellulose binding domain (CBD) of cellobiohydrolase I (CBHI) from Trichoderma reesei belonging to carbohydrate binding module (CBM) family 1 was fused at the C-terminus of CSCMCase. The constructed fusion enzymes (CSCMCase-CBD and CSCMCase-2CBD) were expressed in a newly recombinant expression system of Cryptococcus sp. S-2, purified to homogeneity, and then subject to detailed characterization. The recombinant fusion enzymes displayed optimal pH similar to those of the native enzyme. Compared with rCSCMCase, the recombinant fusion enzymes had acquired an increased binding affinity to insoluble cellulose and the cellulolytic activity toward insoluble cellulosic substrates (SIGMACELL® and Avicel) was higher than that of native enzyme, confirming the presence of CBDs improve the binding and the cellulolytic activity of CSCMCase on insoluble substrates. This attribute should make CSCMCase an attractive applicant for various application.  相似文献   

10.
The bacterial strain Paenibacillus xylanilyticus KJ-03 was isolated from a sample of soil used for cultivating Amorphophallus konjac. The cellulase gene, cel5A was cloned using fosmid library and expressed in Escherichia coli BL21 (trxB). The cel5A gene consists of a 1,743 bp open reading frame and encodes 581 amino acids of a protein. Cel5A contains N-terminal signal peptide, a catalytic domain of glycosyl hydrolase family 5, and DUF291 domain with unknown function. The recombinant cellulase was purified by Ni-affinity chromatography. The cellulase activity of Cel5A was detected in clear band with a molecular weight of 64 kDa by zymogram active staining. The maximum activity of the purified enzyme was displayed at a temperature of 40 °C and pH 6.0 when carboxymethyl cellulose was used as a substrate. It has 44% of its maximum activity at 70 °C and retained 66% of its original activity at 45 °C for 1 h. The purified cellulase hydrolyzed avicel, CMC, filter paper, xylan, and 4-methylumbelliferyl β-d-cellobiose, but no activity was detected against p-nitrophenyl β-d-glucoside. The end products of the hydrolysis of cellotetraose and cellopentaose by Cel5A were detected by thin layer chromatography, while enzyme did not hydrolyze cellobiose and cellotriose.  相似文献   

11.
There is a high level of conservation of tryptophans within the active site architecture of the cellulase family, whereas the function of the four tryptophans in the catalytic domain of Cel7A is unclear. By mutating four tryptophan residues in the catalytic domain of Cel7A from Penicillium piceum (PpCel7A), the binding affinity between PpCel7A and p-nitrophenol-d -cellobioside (pNPC) was reduced as determined by Michaelis–Menten constants, molecular dynamics simulations, and fluorescence spectroscopy. Furthermore, PpCel7A variants showed a reduced level of cellobiohydrolase (CBH) activity against cellulose analogs or natural cellulose. Therefore, it could be concluded four tryptophan residues in Cel7A played a critical role in substrate binding. Mutagenesis results indicated that the W390 stacking interactions at the −2 site played an essential role in facilitating substrate distortion to the −1 site. As soon as the function was altered, the mutation would inevitably affect the catalytic activity against the natural substrate. Interestingly, no clear relationship was found between the CBH activity of PpCel7A variants against pNPC and Avicel. p-Nitrophenol contains many electrophilic groups that may result in overestimation of the binding constant between tryptophan residues and pNPC in comparison with the natural substrate. Consequently, screening improved cellulase using cellulose analogs would divert attention from the target direction for lignocellulose biorefinery. Clarifying mechanism of catalytic diversity on the natural cellulose or cellulose analogs may give better insight into cellulase screening and selecting strategy.  相似文献   

12.
Addition of L-sorbose, a non-metabolizable non-inducing ketohexose, toTrichoderma reesei cultures growing on cellobiose or Avicel-cellulose lead to increased cellulase activities. Addition of sorbose resulted in a 6-fold increase in cellodextrins (cellotriose, cellotetraose, cellopentaose) concentration on day 3 in cellobiose cultures and 1.3-fold increase in cellodextrins concentrations on day 4 in Avicel cellulose cultures. This increase in intracellular cellodextrins concentration matched closely with the increase in endoglucanase activity at these time points. Treatment of the cell-free extracts with cellulase preparation led to disappearance of the cellodextrins and increase of glucose. These observations suggested a more direct involvement of cellodextrins in cellulase induction process. The cellulases produced in sorbose-supplemented cellobiose medium hydrolyzed microcrystalline cellulose as effectively as the ones produced on Avicel cellulose medium.  相似文献   

13.
The gene coding for CelG, a family 9 cellulase from Clostridium cellulolyticum, was cloned and overexpressed in Escherichia coli. Four different forms of the protein were genetically engineered, purified, and studied: CelGL (the entire form of CelG), CelGcat1 (the catalytic domain of CelG alone), CelGcat2 (CelGcat1 plus 91 amino acids at the beginning of the cellulose binding domain [CBD]), and GST-CBD(CelG) (the CBD of CelG fused to glutathione S-transferase). The biochemical properties of CelG were compared with those of CelA, an endoglucanase from C. cellulolyticum which was previously studied. CelG, like CelA, was found to have an endo cutting mode of activity on carboxymethyl cellulose (CMC) but exhibited greater activity on crystalline substrates (bacterial microcrystalline cellulose and Avicel) than CelA. As observed with CelA, the presence of the nonhydrolytic miniscaffolding protein (miniCipC1) enhanced the activity of CelG on phosphoric acid swollen cellulose (PASC), but to a lesser extent. The absence of the CBD led to the complete inactivation of the enzyme. The abilities of CelG and GST-CBD(CelG) to bind various substrates were also studied. Although the entire enzyme is able to bind to crystalline cellulose at a limited number of sites, the chimeric protein GST-CBD(CelG) does not bind to either of the tested substrates (Avicel and PASC). The lack of independence between the two domains and the weak binding to cellulose suggest that this CBD-like domain may play a special role and be either directly or indirectly involved in the catalytic reaction.  相似文献   

14.
The gene for a 104-kDa exocellulase, Cel48A, formerly E6, was cloned from Thermobifida fusca into Escherichia coli and Streptomyces lividans. The DNA sequence revealed a type II cellulose-binding domain at the N-terminus, followed by a FNIII-like domain and ending with a glycosyl hydrolase Family 48 catalytic domain. The enzyme and catalytic domain alone were each expressed in and purified from S. lividans and had very low catalytic activity on swollen cellulose, carboxymethyl cellulose, bacterial microcrystalline cellulose and filter paper. However, in synergistic assays on filter paper, the addition of Cel48A to a balanced mixture of T. fusca endocellulase and exocellulase increased the specific activity from 7.9 to 11.7 micromol cellobiose.min-1.mL-1, more than 15-fold higher than any single enzyme alone. Cel48A retained > 50% of its maximum activity from pH 5 to 9 and from 40 to 60 degrees C. Using SWISSMODEL, the amino-acid sequence of the Cel48Acd was modeled to the known structure of Clostridium cellulolyticum CelF. Family 48 enzymes are remarkably homologous at 35% identity for all their catalytic domains and some of the properties of the 10 members are discussed.  相似文献   

15.
The genome of Clostridium cellulolyticum encodes 13 GH9 enzymes that display seven distinct domain organizations. All but one contain a dockerin module and were formerly detected in the cellulosomes, but only three of them were previously studied (Cel9E, Cel9G, and Cel9M). In this study, the 10 uncharacterized GH9 enzymes were overproduced in Escherichia coli and purified, and their activity pattern was investigated in the free state or in cellulosome chimeras with key cellulosomal cellulases. The newly purified GH9 enzymes, including those that share similar organization, all exhibited distinct activity patterns, various binding capacities on cellulosic substrates, and different synergies with pivotal cellulases in mini-cellulosomes. Furthermore, one enzyme (Cel9X) was characterized as the first genuine endoxyloglucanase belonging to this family, with no activity on soluble and insoluble celluloses. Another GH9 enzyme (Cel9V), whose sequence is 78% identical to the cellulosomal cellulase Cel9E, was found inactive in the free and complexed states on all tested substrates. The sole noncellulosomal GH9 (Cel9W) is a cellulase displaying a broad substrate specificity, whose engineered form bearing a dockerin can act synergistically in minicomplexes. Finally, incorporation of all GH9 cellulases in trivalent cellulosome chimera containing Cel48F and Cel9G generated a mixture of heterogeneous mini-cellulosomes that exhibit more activity on crystalline cellulose than the best homogeneous tri-functional complex. Altogether, our data emphasize the importance of GH9 diversity in bacterial cellulosomes, confirm that Cel9G is the most synergistic GH9 with the major endoprocessive cellulase Cel48F, but also identify Cel9U as an important cellulosomal component during cellulose depolymerization.  相似文献   

16.
The genome of Clostridium thermocellum contains a number of genes for polysaccharide degradation-associated proteins that are not cellulosome bound. The list includes beta-glucanases, glycosidases, chitinases, amylases and a xylanase. One of these 'soluble'-enzyme genes codes for a second glycosyl hydrolase (GH)48 cellulase, Cel48Y, which was expressed in Escherichia coli and biochemically characterized. It is a cellobiohydrolyse with activity on native cellulose such as microcrystalline and bacterial cellulose, and low activity on carboxymethylcellulose. It is about 100 times as active on amorphic cellulose and mixed-linkage barley beta-glucan compared with cellulase Cel9I. The enzyme Cel48Y shows a distinct synergism of 2.1 times with the noncellulosomal processive endoglucanase Cel9I on highly crystalline bacterial cellulose at a 17-fold excess of Cel48Y over Cel9I. These data show that C. thermocellum has, besides the cellulosome, the genes for a second cellulase system for the hydrolysis of crystalline cellulose that is not particle bound.  相似文献   

17.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

18.
Characterization of a metagenome-derived halotolerant cellulase   总被引:7,自引:0,他引:7  
Metagenomes of uncultured microorganisms represent a sheer unlimited resource for discovery of novel biocatalysts. Here, we report on the biochemical characterisation of a novel, soil metagenome-derived cellulase (endoglucanase), Cel5A. The deduced amino acid sequence of Cel5A was similar to a family 5, single domain cellulase with no distinct cellulose binding domain from Cellvibrio mixtus. The 1092bp ORF encoding Cel5A was overexpressed in Escherichia coli and the corresponding 42.1 kDa protein purified using three-step chromatography. The recombinant Cel5A protein was highly active against soluble cellulose substrates containing beta-1,4 linkages, such as lichenan and barley beta-glucan, and not active against insoluble cellulose. Glucose was not among the initial hydrolysis products, indicating an endo mode of action. Cel5A displayed a wide range of pH activity with a maximum at pH 6.5 and at least 60% activity at pH 5.5 and 9.0. The enzyme was highly stable at 40 degrees C for up to 11 days, and retained 86-87% activity after incubation with 3M NaCl, 3M RbCl or 4M KCl for 20 h. Cel5A was also active in the presence of diverse divalent cations, detergents and EDTA. This highly stable, salt and pH tolerant cellulase is an ideal candidate for industrial applications.  相似文献   

19.
The enzymatic composition of the cellulosomes produced by Clostridium cellulolyticum was modified by inhibiting the synthesis of Cel48F that is the major cellulase of the cellulosomes. The strain ATCC 35319 (pSOSasrF) was developed to over-produce a 469 nucleotide-long antisense-RNA (asRNA) directed against the ribosome-binding site region and the beginning of the coding region of the cel48F mRNAs. The cellulolytic system secreted by the asRNA-producing strain showed a markedly lower amount of Cel48F, compared to the control strain transformed with the empty plasmid (pSOSzero). This was correlated with a 30% decrease of the specific activity of the cellulolytic system on Avicel cellulose, indicating that Cel48F plays an important role in the recalcitrant cellulose degradation. However, only minor effects were observed on the growth parameters on cellulose. In both transformant strains, cellulosome production was found to be reduced and two unknown proteins (P105 and P98) appeared as major components of their cellulolytic systems. These proteins did not contain any dockerin domain and were shown to be not included into the cellulosomes; they are expected to participate to the non-cellulosomal cellulolytic system of C. cellulolyticum.  相似文献   

20.
The gene of a novel endo-β-1,4-glucanase (named Cel5M) was isolated from the psychrophilic deep-sea bacteria Pseudomonas sp. MM15. The deduced protein sequence lacked the typical cellulase domain structures of the carbohydrate-binding module and the linker region. Cel5M showed relatively higher activity toward carboxymethyl cellulose, but much lower activity toward p-nitrophenyl-β-D-galactopyranoside and no activity toward avicel. Cel5M was identified as a cold-active cellulase with an optimal temperature of 30 °C and it was active within a narrow pH range with an optimum at pH 4.5. Phylogenetic analysis showed that Cel5M represented a new subfamily of the glycosyl hydrolase family 5, representing an opportunity for research into and applications of novel cold-active cellulases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号