首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence in cancer tissue of Ag-specific, activated tumor infiltrating CD8(+) T cells proves that tumors express Ags capable of eliciting immune response. Therefore, in general, tumor escape from immune-mediated clearance is not attributable to immunological ignorance. However, tumor-infiltrating lymphocytes are defective in effector phase function, demonstrating tumor-induced immune suppression that likely underlies tumor escape. Since exocytosis of lytic granules is dependent upon TCR-mediated signal transduction, it is a reasonable contention that tumors may induce defective signal transduction in tumor infiltrating T cells. In this review, we consider the biochemical basis for antitumor T cell dysfunction, focusing on the role of inhibitory signaling receptors in restricting TCR-mediated signaling in tumor-infiltrating lymphocytes.  相似文献   

2.
The immune system can act as an extrinsic suppressor of tumors. Therefore, tumor progression depends in part on mechanisms that downmodulate intrinsic immune surveillance. Identifying these inhibitory pathways may provide promising targets to enhance antitumor immunity. Here, we show that Stat3 is constitutively activated in diverse tumor-infiltrating immune cells, and ablating Stat3 in hematopoietic cells triggers an intrinsic immune-surveillance system that inhibits tumor growth and metastasis. We observed a markedly enhanced function of dendritic cells, T cells, natural killer (NK) cells and neutrophils in tumor-bearing mice with Stat3(-/-) hematopoietic cells, and showed that tumor regression requires immune cells. Targeting Stat3 with a small-molecule drug induces T cell- and NK cell-dependent growth inhibition of established tumors otherwise resistant to direct killing by the inhibitor. Our findings show that Stat3 signaling restrains natural tumor immune surveillance and that inhibiting hematopoietic Stat3 in tumor-bearing hosts elicits multicomponent therapeutic antitumor immunity.  相似文献   

3.
4.
Immune-based therapy confers limited benefits to hosts bearing late-stage tumors. Mounting evidence points to local suppression of T cell function as the most substantial barrier to effective antitumor immunity in hosts with large tumor burdens. Despite this, events responsible for locally defective T cells and immune suppression in tumors remain unclear. We describe in this study a predominant T cell population localized within two murine tumors that is characterized by expression of apoptotic markers and TCRalphabeta/CD3, but not CD4, CD8, or NK-associated markers. These defective cells resembled double negative (DN) T cells in lpr mice, harbored defects in the expression of T cell signaling molecules, and produced the anti-inflammatory cytokine, IL-10. Conditions known to increase or decrease the accumulation of lpr DN T cells had corresponding effects on local DN tumor infiltrating lymphocyte (TIL) levels and inversely impacted host survival. Adoptive transfer into s.c. tumors demonstrated that naive CD8(+) T cells were highly susceptible to becoming DN TIL, and local supplementation of tumors with nontumor Ag-bearing MHC class I-expressing fibroblasts decreased both this susceptibility and endogenous DN TIL levels. These findings identify a major defective T cell population with suppressive potential within tumors. The data also suggest that local T cell defectiveness is controlled by the tumor environment independent of cognate Ag specificity per se. Decreasing defective DN TIL levels by increasing noncognate peptide MHC class I availability, or modulating TCR or cytokine signaling may facilitate host survival by bolstering endogenous immunity to late-stage tumors, and may help improve therapeutic tumor vaccines.  相似文献   

5.
Reversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.Subject terms: Cancer microenvironment, Targeted therapies  相似文献   

6.
CD4+T cells from aged humans or mice show significant reductions in IL-2 production upon activation. The resulting decreased proliferation is linked to higher risks of infection in the elderly. Several lines of evidence indicate that intrinsic defects preferentially affecting the naïve subset of CD4+T cells contribute to this reduced IL-2 production. Comparison of the biochemical pathways that transduce activation signals from the T cell receptor to the IL-2 promoter in young and old CD4+T cells has demonstrated age-related impairments at initial molecular events, in particular the phosphorylation of kinases and adapter proteins involved in the formation of signalosomes - complex multiprotein assemblies that provide the framework for effective signal transduction. Confocal microscopy has demonstrated a series of age-related impairments in effective immune synapse formation. Vitamin E can reverse many of these CD4+T cell age-associated defects, including reduced levels of phosphorylation of critical signaling/adapter proteins as well as defective immune synapse formation. Vitamin E also enhances IL-2 production, expression of several cell cycle control proteins, and proliferation. Although the precise mechanisms underlying this effect are not understood, it is possible that this antioxidant lipophilic vitamin can prevent the propagation of polyunsaturated fatty acid peroxidation in the cell membrane, influence the biochemical characteristics of specific lipid bilayer microdomains involved in signal transduction, modulate the activity of kinases/phosphatases, or interact with intracellular receptors.  相似文献   

7.
Myoglobin-specific, Iad-restricted cloned helper T cells and T hybridomas were found to directly kill Iad-bearing, myoglobin-pulsed B lymphoma targets and could also kill bystander targets, but only in the presence of antigen-pulsed antigen presenting cells (APC). The induction of the killing requires recognition of processed antigen in the context of class II major histocompatibility complex (MHC) molecules. Despite the specificity of induction, the bystander killing suggests a nonspecific lytic mechanism. The direct killing can be inhibited only by cold specific targets, whereas the bystander killing can be blocked by both specific and nonspecific targets. The cold target inhibition seems to be due to interference with effector-to-target contact or proximity rather than due to high-dose suppression of T-cell activation. Experiments using T-cell supernatants or cyclosporin A suggested that the helper T cells kill targets by synthesizing short-range soluble factor(s) with nonspecific killing activity de novo during the effector phase, but only while antigen-specific signal transduction is occurring. The mechanism of cold target inhibition appears to be absorption or consumption of a short-acting cytotoxic lymphokine by cells which must be able to interact closely with the effector cell. Normal spleen B cells, despite their capability for activating the helper T cells, cannot inhibit specific killing or be killed by helper T cells, even after lipopolysaccharide stimulation. Thus, although killing by helper T cells may play a negative feedback role in the normal immune response, our data raise the possibility that the helper T-cell-mediated killing may contribute to the immune surveillance against malignancy by virtue of the preferential killing of tumor cells either directly or indirectly.  相似文献   

8.
9.
Recent studies show that cancer cells are sometimes able to evade the host immunity in the tumor microenvironment. Cancer cells can express high levels of immune inhibitory signaling proteins. One of the most critical checkpoint pathways in this system is a tumor-induced immune suppression (immune checkpoint) mediated by the programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1). PD-1 is highly expressed by activated T cells, B cells, dendritic cells, and natural killer cells, whereas PD-L1 is expressed on several types of tumor cells. Many studies have shown that blocking the interaction between PD-1 and PD-L1 enhances the T-cell response and mediates antitumor activity. In this review, we highlight a brief overview of the molecular and biochemical events that are regulated by the PD-1 and PD-L1 interaction in various cancers.  相似文献   

10.
The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical “don't find me” signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the “don't eat me” signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using “Knobs-into-holes” technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.  相似文献   

11.
Therapies that utilize immune checkpoint inhibition work by leveraging mutation-derived neoantigens and have shown greater clinical efficacy in tumors with higher mutational burden. Whether tumors with a low mutational burden are susceptible to neoantigen-targeted therapy has not been fully addressed. To examine the feasibility of neoantigen-specific adoptive T-cell therapy, the authors studied the T-cell response against somatic variants in five patients with myelodysplastic syndrome (MDS), a malignancy with a very low tumor mutational burden. DNA and RNA from tumor (CD34+) and normal (CD3+) cells isolated from the patients’ blood were sequenced to predict patient-specific MDS neopeptides. Neopeptides representing the somatic variants were used to induce and expand autologous T cells ex vivo, and these were systematically tested in killing assays to determine the proportion of neopeptides yielding neoantigen-specific T cells. The authors identified a total of 32 somatic variants (four to eight per patient) and found that 21 (66%) induced a peptide-specific T-cell response and 19 (59%) induced a T-cell response capable of killing autologous tumor cells. Of the 32 somatic variants, 11 (34%) induced a CD4+ response and 11 (34%) induced a CD8+ response that killed the tumor. These results indicate that in vitro induction of neoantigen-specific T cells is feasible for tumors with very low mutational burden and that this approach warrants investigation as a therapeutic option for such patients.  相似文献   

12.
The rules that govern the engagement of antitumor immunity are not yet fully understood. Ags expressed by tumor cells are prone to induce T cell tolerance unless the innate immune system is activated. It is unclear to what extent tumors engage this second signal link by the innate immune system. Apoptotic and necrotic (tumor) cells are readily recognized and phagocytosed by the cells of the innate immune system. It is unknown how this affects the tumor's immunogenicity. Using a murine melanoma (B16m) and lymphoma (L5178Y-R) model, we studied the clonal sizes and cytokine signatures of the T cells induced by these tumors in syngeneic mice when injected as live, apoptotic, and necrotic cells. Both live tumors induced a type 2 CD4 cell response characterized by the prevalent production of IL-2, IL-4, and IL-5 over IFN-gamma. Live, apoptotic, and necrotic cells induced CD4 (but no CD8) T cells of comparable frequencies and cytokine profiles. Therefore, live tumors engaged the second signal link, and apoptotic or necrotic tumor cell death did not change the magnitude or quality of the antitumor response. A subclone of L5178Y-R, L5178Y-S cells, were found to induce a high-frequency type 1 response by CD4 and CD8 cells that conveyed immune protection. The data suggest that the immunogenicity of tumors, and their characteristics to induce type 1 or type 2, CD4 or CD8 cell immunity is not primarily governed by signals associated with apoptotic or necrotic cell death, but is an intrinsic feature of the tumor itself.  相似文献   

13.
Deficiency of SAP (SLAM (signaling lymphocyte activation molecule)-associated protein) protein is associated with a severe immunodeficiency, the X-linked lymphoproliferative disease (XLP) characterized by an inappropriate immune reaction against Epstein-Barr virus infection often resulting in a fatal clinical course. Several studies demonstrated altered NK and T cell function in XLP patients; however, the mechanisms underlying XLP disease are still largely unknown. Here, we show that non-transformed T cell lines obtained from XLP patients were defective in several activation events such as IL-2 production, CD25 expression, and homotypic cell aggregation when cells were stimulated via T cell antigen receptor (TCR).CD3 but not when early TCR-dependent events were bypassed by stimulation with phorbol 12-myristate 13-acetate/ionomycin. Analysis of proximal T cell signaling revealed imbalanced TCR.CD3-induced signaling in SAP-deficient T cells. Although phospholipase C gamma 1 phosphorylation and calcium response were both enhanced in T cells from XLP patients, phosphorylation of VAV and downstream signal transduction events such as mitogen-activated protein kinase phosphorylation and IL-2 production were diminished. Importantly, reconstitution of SAP expression by retroviral-mediated gene transfer completely restored abnormal signaling events in T cell lines derived from XLP patients. In conclusion, SAP mutation or deletion in XLP patients causes profound defects in T cell activation, resulting in immune deficiency. Moreover, these data provide evidence that SAP functions as an essential integrator in early TCR signal transduction.  相似文献   

14.
Development of new effective method for cancer therapy is one of the most important trends in the modern medicine. Along with surgery, chemotherapy and radiotherapy, induction of an immune response against the tumor cells is a promising approach for therapy of cancer, particularly metastatic, slowly dividing tumors and cancer stem cells. Induction of the antitumor T-cell immune response involves activation of antigen-presenting cells, which can efficiently present the cancer antigens and activate T-lymphocytes. The immune response may be activated by dendritic cells (DC) loaded with tumor antigens, such as tumor-specific proteins, tumor cell lysates, apoptotic or necrotic tumor cells, as well as nucleic acids encoding tumor antigens. Regardless of the selected source of the tumor antigen, preparation of mature DC is a principal step in the development of anticancer vaccines aimed at the induction of the cytotoxic T-cell immune response. Recently, various research groups have proposed several strategies for producing mature DC, differed by the set of agents used. It has been shown that the maturation strategy influences both their phenotype and the ability to induce the immune response. In this review we have analyzed the results of studies on the various strategies of preparation of mature DCs.  相似文献   

15.
《Translational oncology》2020,13(12):100856
The immunogenic clonal-fraction threshold in heterogeneous solid-tumor required to induce effective bystander-killing of non-immunogenic subclones is unknown. Pancreatic cancer poses crucial challenges for immune therapeutic interventions due to low mutational-burden and consequent lack of neoantigens. Here, we designed a model to incorporate artificial-neoantigens into genes-of -interest in cancer-cells and to test their potential to actuate bystander-killing. By precisely controlling a neoantigen's abundance in the tumor, we studied the impact of neoantigen frequency on immune-response and immune-escape. Our results showed single, strong, widely-expressed neoantigen could lead to robust antitumor response when over 80% of cancer cells express the neoantigen. Further, immunological assays demonstrated T-cell responses against non-target self-antigen on KRAS-oncoprotein, when we inoculated animals with a high frequency of tumor-cells expressing test-neoantigen. Using nanoparticle-based gene-therapy, we successfully altered tumor-microenvironment by perturbing interleukin-12 and interleukin-10 gene-expression. The subsequent microenvironment-remodeling reduced the neoantigen frequency threshold at which bioluminescent signal intensity for tumor-burden decreased 1.5-log-fold, marking robust tumor-growth inhibition, from 83% to 29%. Our results thus suggest bystander killing is inefficient in immunologically-cold tumors like pancreatic-cancer and requires high neoantigen abundance. However, bystander killing mediated antitumor response can be rescued by adjuvant-immune therapy.  相似文献   

16.
Human CD8+ T cells activated and expanded by TCR cross-linking and high-dose IL-2 acquire potent cytolytic ability against tumors and are a promising approach for immunotherapy of malignant diseases. We have recently reported that in vitro killing by these activated cells, which share phenotypic and functional characteristics with NK cells, is mediated principally by NKG2D. NKG2D is a surface receptor that is expressed by all NK cells and transmits an activating signal via the DAP10 adaptor molecule. Using stable RNA interference induced by lentiviral transduction, we show that NKG2D is required for cytolysis of tumor cells, including autologous tumor cells from patients with ovarian cancer. We also demonstrated that NKG2D is required for in vivo antitumor activity. Furthermore, both activated and expanded CD8+ T cells and NK cells use DAP10. In addition, direct killing was partially dependent on the DAP12 signaling pathway. This requirement by activated and expanded CD8+ T cells for DAP12, and hence stimulus from a putative DAP12-partnered activating surface receptor, persisted when assayed by anti-NKG2D Ab-mediated redirected cytolysis. These studies demonstrated the importance of NKG2D, DAP10, and DAP12 in human effector cell function.  相似文献   

17.
Radiolabeled monoclonal antibodies (mAb) have demonstrated measurable antitumor effects in hematologic malignancies. This outcome has been more difficult to achieve for solid tumors due, for the most part, to difficulties in delivering sufficient quantities of mAb to the tumor mass. Previous studies have shown that nonlytic levels of external beam radiation can render tumor cells more susceptible to T cell-mediated killing. The goal of these studies was to determine if the selective delivery of a radiolabeled mAb to tumors would modulate tumor cell phenotype so as to enhance vaccine-mediated T-cell killing. Here, mice transgenic for human carcinoembryonic antigen (CEA) were transplanted with a CEA expressing murine carcinoma cell line. Radioimmunotherapy consisted of yttrium-90 (Y-90)-labeled anti-CEA mAb, used either alone or in combination with vaccine therapy. A single dose of Y-90-labeled anti-CEA mAb, in combination with vaccine therapy, resulted in a statistically significant increase in survival in tumor-bearing mice over vaccine or mAb alone; this was shown to be mediated by engagement of the Fas/Fas ligand pathway. Mice receiving the combination therapy also showed a significant increase in the percentage of viable tumor-infiltrating CEA-specific CD8(+) T cells compared to vaccine alone. Mice cured of tumors demonstrated an antigen cascade resulting in CD4(+) and CD8(+) T-cell responses not only for CEA, but for p53 and gp70. These results show that systemic radiotherapy in the form of radiolabeled mAb, in combination with vaccine, promotes effective antitumor response, which may have implications in the design of future clinical trials.  相似文献   

18.
Proteins involved in class I MHC (MHC-I) Ag processing, such as the TAP, are deficient in some human tumor cells. This suggests that antitumor responses by CD8 T cells provide selection pressure to favor outgrowth of cells with defective processing of tumor Ags. Nonetheless, this evidence is only correlative, and controlled in vivo experiments have been lacking to demonstrate that TAP deficiency promotes survival of tumor cells. To explore the role of Ag processing defects in tumor progression, matched panels of TAP1-positive and TAP1-negative tumor cell lines were generated from a parental transformed murine fibroblast line. Inoculation of C57BL/6 mice with TAP1-negative cells produced large and persistent tumors. In contrast, TAP1-positive cells did not generate lasting tumors, although small tumors were detected transiently and regressed spontaneously. Both TAP1-positive and TAP1-negative cells produced tumors in athymic mice, confirming that TAP-dependent differences in tumorigenicity were due to T cell-dependent immune responses. Inoculation of C57BL/6 mice with mixtures of TAP1-positive and TAP1-negative cells produced tumors composed exclusively of TAP1-negative cells, indicating in vivo selection for cells with TAP deficiency. Thus, loss of TAP function allows some tumor cells to avoid T cell-dependent elimination, resulting in selection for tumor cells with deficient Ag processing.  相似文献   

19.
Therapeutic vaccinations used to induce CTLs and treat firmly established tumors are generally ineffective. To understand the mechanisms underlying the failure of therapeutic vaccinations, we investigated the fate of tumor-specific CD8+ T cells in tumor-bearing mice with or without vaccinations. Our data demonstrate that tumor-specific CD8+ T cells are activated at the early stage of tumor growth, tumor-specific CTL response reaches a maximal level during progressive tumor growth, and tumor-specific CD8+ T cells lose cytolytic function at the late stage of tumor growth. The early stage therapeutic vaccination induces efficient antitumor activity by amplifying the CTL response, whereas the late-stage therapeutic vaccination is invalid due to tumor-induced dysfunction of CD8+ T cells. However, at the late stage, tumor-specific CD8+ T cells are still present in the periphery. These tumor-specific CD8+ T cells lose cytolytic activity, but retain IFN-gamma secretion function. In contrast to in vitro cultured tumor cells, in vivo growing tumor cells are more resistant to tumor-specific CTL killing, despite an increase of tumor Ag gene expression. Both tumor-induced CD8+ T cell dysfunction at the late stage and immune evasion developed by in vivo growing tumor cells contribute to an eventual inefficacy of therapeutic vaccinations. Our study suggests that it is important to design a vaccination regimen according to the stages of tumor growth and the functional states of tumor-specific CD8+ T cells.  相似文献   

20.
It is well established that certain stress proteins or molecular chaperones are highly efficient in cross-presenting tumor-derived antigens, resulting in a potent antitumor immune response. In this study we demonstrate that genetic modification of weakly immunogenic murine prostate tumor cells (TRAMP-C2) by stable transfection with a secretable form of endoplasmic reticulum resident chaperone grp170 significantly enhances its immunogenicity in vivo. Generation of systemic antitumor immunity is indicated by the growth suppression of distant parental tumors, which is associated with increased tumor infiltration, elevated effector functions of CD8+ T-cells. Immunization with inactivated grp170-secreting C2 cells augments a CD8+ T-cell dependent, tumor-protective effect. Furthermore, infection of C2 tumor cells with a nonreplicating adenoviral vectors encoding secretable grp170 promotes tumor immunogenicity more effectively than plasmid transduction, as shown by the increased production of pro-inflammatory cytokine TNF-α by dendritice cells and enhanced therapeutic efficacy in treating pre-established tumors. Given a repertoire of undefined antigens in prostate tumor, manipulation of cellular compartmentalization of immuno-stimulatory chaperone grp170 to elicit systemic tumor immunity may be used to improve treatment outcomes for prostate cancer when combined with other treatment modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号