首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Eisler 《Bio Systems》1992,26(4):239-254
The ciliate species which lack a distinctive oral ciliature are considered to represent an ancestral state in ciliate evolution. Consequently, the somatic kineties composed of kinetids (kinetosomes plus cilia and associated fibrillar systems) are thought to be the ancestral ciliature. Results on stomatogenesis in 'gymnostomial ciliates' have shown that these ciliates probably have evolved from ancestors already equipped with an oral ciliature. Thus instead of the somatic, the oral ciliature may be regarded an ancestral. Based on these ideas a hypothesis on the evolution of the ciliate kinetome (assembly of all kinetids covering the body of a given ciliate) is presented. The first step in the evolution of the kinetome was the formation of a paroral membrane, a compound ciliary organelle lying along the right side of the oral area which historically but falsely is termed membrane. It was composed of kinetosomal dyads (dikinetids), derived from the kinetid of a dinoflagellate-like ancestor. From the beginning the paroral membrane was responsible for locomotion, ingestion and for the formation of a cytopharyngeal tube which the first ciliate probably had inherited from its flagellate ancestor. In the second step a first somatic kinety was formed from the right row of kinetosomes of the paroral membrane as a result of a longitudinal splitting of the paroral membrane and a subsequent migration of the forming kinety to the right into the somatic cortex. To increase the number of somatic kineties this process was repeated until the kinety produced first reached the left border of the oral area. By this step the locomotive and the nutritional functions were differentiated between somatic and oral structures. In a third step the adoral organelles were formed from somatic kinetids left of the oral area. The primitive type of stomatogenesis was a buccokinetal one derived from the mode the flagellate ancestor used to distribute its replicated kinetosomes to the offspring cells (buccokinetal means that at least parts of the oral anlage for the posterior offspring cell has its origin in the parental oral apparatus). This hypothesis, based on comparative studies on ciliate morphogenesis, is corroborated by molecular data from other laboratories.  相似文献   

2.
The morphogenesis of ciliary zones has been studied in the ciliate Eudiplodinium maggi which has a vestigial somatic infraciliature consisting of subcortical barren kinetosomes. These replicate and migrate into the subequatorial ciliary anlagen of the dividing cells. The kinetid pattern of the barren kinetosomes changes sequentially to that of the ciliary zones. Postciliary and transverse microtubules are derived from basal and cortically directed microtubules while a dense spur coincides with the origin of the kinetodesma. All kinetics produce potential cytopharyngeal components. Nematodesmata originate in granular subkinetosomal dense plates, while two of the three types of cytopharyngeal ribbon are formed from tansverse microtubules. A spatial selectivity ensures that these components extend only from specific kinetids. It is concluded that 91) morphogenesis of the intricate cytoskeletal network of infraciliature involves a “pattern generator” in the vestigial somatic kinetids; and 92) entodiniomorph stomatogenesis in not truly apokinetal but is more like the telokinetal process of related ciliates.  相似文献   

3.
SYNOPSIS. Protozoology, along with other cell sciences, has profited immeasurably during the last 25 years from the application of electron microscopy and other new technics to studies of cell structure and function. Protozoa were among the first objects examined with the electron microscope in the 1940's and an extensive literature in protozoan ultrastructure has accumulated since then. Some examples of recent investigations of ciliate cortical ultrastructure are selected to illustrate the importance of protozoan studies to the development of fundamental concepts of cell biology. Ciliates are choice subjects for analysis of ciliary structure and motility and of myoneme contractility. Membrane-limited alveoli contribute to the structure of the characteristic ciliate pellicle and provide evidence of how multiple pellicular membranes may affect cell-surface activities. The striated fibrils and microtubules associated with ciliate kinetosomes resemble those of other cell types but are more highly organized; wherever they occur, these structures appear to be related to the development and maintenance of polarity and asymmetry of cells and organelles. Their stability and the precision of their arrangement in ciliates make them peculiarly suitable for the study of the properties and behavior of such fibrous organelles and also for investigation of the morphogenetic role of the kinetosome.  相似文献   

4.
SYNOPSIS. Morphogenesis, and the cortical structures of Brooklynella hostilis, a cyrtophorine gymnostome ciliate ectoparasitic on marine fishes, were studied from protargol silver-impregnated preparations and with the aid of electron microscopy. The pattern of morphogenesis of Brooklynella is close to that found in less differentiated species of the families Chlamydodontidae (e.g., in the genus Trithigmostoma) and Dysteriidae (e.g., in the genus Hartmanula). The full number of kineties in the opisthe is restored after division from a segment of the left one of the 3 kinetics producing the oral rows. The oral rows consist of a double row of kinetosomes arranged in a zig-zag pattern; only the outer row is ciliated, the inner one being barren. However, the positions of the postciliary and transverse fibers indicate that the oral rows are not homologs of an undulating membrane but are akin to a membranelle. In association with the ventral somatic kinetosomes there are 4 postciliary fibers; a rather aberrant, transversally oriented kinetodesma; 2 microtubular, transverse fibers plus a transverse fibrousspur; and one to several ribbons of subkinetal microtubular fibers. Not directly associated with the kinetosomes are fibrous strands running subpellicularly between the kinetosomes and also deep into the cytoplasm. The cortical structures of Brooklynella are compared with those of some other groups of ciliates of about the same phylogenetic level in which the subkinetal microtubules can also be found– rhynchodine, suctorian, and chonotrich ciliates. The nasse consists of 6–8 nematodesmata not closely associated with the microtubular cytopharyngeal tube. The former have a distinctly developed densely fibrous capitulum containing barren kinetosomes which originally produced the nematodesma during stomatogenesis; the capitulum is connected by a fibrous link to the microtubular shaft. Extending from the oral rows to the capitula are fibrous structures strongly reminiscent of filamentous reticulum in hymenostome and peritrich ciliates. The structure of the posterio-ventral glandular organelle is also described and discussed.  相似文献   

5.
The morphology and morphogenesis of the kinetofragminophoran soil ciliates, Fuscheria terricola n. sp. and Spathidium muscorum Dragesco & Dragesco-Kerneis, 1979, are described. Stained specimens (protargol) are characterized biometrically. The new species differs from the other species of the genus in its body size, body shape, number of kineties, length of extrusomes, and habitat. Both species have telokinetal stomatogenesis, which commences with a proliferation of kinetosomes at those kineties which bear the brosse. Fuscheria terricola does not have a complex perioral ciliature; indeed, it might be that this species has only monokinetids. Thus only a proliferation of kinetosomes and the separation of the kineties takes place in the prospective division furrow. In contrast, S. muscorum differentiates short dikinetid kinetofragments in the region of the division furrow, which are arranged to form the perioral kinety of the opisthe in the intermediate and late stages of the stomatogenesis. The right part of the perioral kinety develops first. This and other studies show that telokinetal stomatogenesis proceeds very differently depending on the differentiation of the oral ciliature; however, detailed studies on the morphogenesis of kinetofragminophoran ciliates are still too few in number for subtypes to be defined.  相似文献   

6.
7.
(1) Ciliated protozoa are viewed as unicellular organisms structured in a hierarchy of organizational levels that include the macromolecular, suborganellar, unit organellar, organellar complex, and organellar system. (2) The ciliate cortex is divided into two major functional regions, the somatic region and the oral region. The fundamental component of the cortex is an organellar complex, the kinetid, whose organizing centre is the kinetosome with which are associated three fibrillar associates diagnostic of ciliates. These three fibrillar associates are the periodically striated kinetodesmal fibril and two microtubular ribbons, the transverse and postciliary ribbons. (3) Somatic and oral kinetids are found to be of three major types: monokinetids are composed of one kinetosome and its fibrillar associates; dikinetids are composed of two kinetosomes and their fibrillar associates; polykinetids are composed of more than two kinetosomes and their fibrillar associptes. (4) The mechanisms underlying kinetid function and development remain largely unexplored. Research into the molecular biology and ultrastructure, especially of mutant forms, should provide basic insights in the near future. (5) The conservation of kinetid structure across major phyla of organisms suggests that this subcellular structure should be useful in phylogenetic analysis despite the concepts of ‘chemical identity’ and ‘organic design’. (6) The evolutionary rate of change of oral features is greater than that of somatic features, probably due to developmental and ecological factors. Nevertheless both cortical regions are constrained by the phenomenon of structural conservatism; that is, the conservation of structure through time is inversely related to the level of biological organization. (7) Eight major groupings of ciliate species are recognized, based on ultrastruc-tural features of the cortex. Several examples of differences between these eight groups and the groups presently recognized are discussed.  相似文献   

8.
Specification of polar and lateral axes has been investigated in several metazoan developmental systems. In order to analyze this phenomenon in unicellular organisms, singlet cells of the ciliate, Stylonychia mytilus, were cut along their longitudinal axis and the regenerative morphogenetic sequence was analyzed. Morphogenesis in right fragments, which folded such that the posterior and anterior ends were juxtaposed and fused, leads to formation of two partially mirror-imaged incomplete ventral ciliary patterns. Regenerative morphogenesis in singlet hypotrich ciliates typically produces only one complete set of ciliary organelles. These data demonstrate that cytoplasmic orientation (cytogeometry) plays a major role in the determination of ciliary pattern and that polar and lateral axes are determined independently in this species.  相似文献   

9.
Recent works on prostomatid ciliates show that some genera of this group have a differentiated oral infraciliature and that their stomatogenesis during division involves the proliferation of only a few somatic kineties. These findings have significant implications regarding the iaxonomic status of these genera and also on the terminology used for the oral structures. In Urotricha ondina , the oral infraciliature consists of (1) a paroral kinety formed of paired kinetosomes that encircle the cytostome at the anterior pole of the cell and (2) 3 adoral organelles, each formed of 2 rows of kinetosomes, ventral in position and obliquely disposed, lying above 3 short somatic kineties that do not reach the anterior pole of the cell. This oral ciliature —formerly known as the corona and brosse, respectively—originate during stomatogenesis from the proliferation of 4 somatic kineties that lie posterior to the adoral organelles of the parental cell.  相似文献   

10.
Ciliophora is a phylum that is comprised of extremely diverse microorganisms with regard to their morphology and ecology. They may be found in various environments, as free-living organisms or associated with metazoans. Such associations range from relationships with low metabolic dependence such as epibiosis, to more intimate relationships such as mutualism and parasitism. We know that symbiotic relationships occur along the whole phylogeny of the group, however, little is known about their evolution. Theoretical studies show that there are two routes for the development of parasitism, yet few authors have investigated the evolution of these characteristics using molecular tools. In the present study, we inferred a wide dated molecular phylogeny, based on the 18S rDNA gene, for the entire Ciliophora phylum, mapped life habits throughout the evolutionary time, and evaluated whether symbiotic relationships were linked to the variation in diversification rates and to the mode of evolution of ciliates. Our results showed that the last common ancestor for Ciliophora was likely a free-living organism, and that parasitism is a recent adaptation in ciliates, emerging more than once and independently via two distinct routes: (i) a free-living ciliate evolved into a mutualistic organism and, later, into a parasitic organism, and (ii) a free-living ciliate evolved directly into a parasitic organism. Furthermore, we have found a significant increase in the diversification rate of parasitic and mutualistic ciliates compared with their free-living conspecifics. The evolutionary success in different lineages of symbiont ciliates may be associated with many factors including type and colonization placement on their host, as well as physical and physiological conditions made available by the hosts.  相似文献   

11.

Background

The study of cell metabolism is becoming central in several fields such as biotechnology, evolution/adaptation and human disease investigations. Here we present CiliateGEM, the first metabolic network reconstruction draft of the freshwater ciliate Tetrahymena thermophila. We also provide the tools and resources to simulate different growth conditions and to predict metabolic variations. CiliateGEM can be extended to other ciliates in order to set up a meta-model, i.e. a metabolic network reconstruction valid for all ciliates.Ciliates are complex unicellular eukaryotes of presumably monophyletic origin, with a phylogenetic position that is equal from plants and animals. These cells represent a new concept of unicellular system with a high degree of species, population biodiversity and cell complexity. Ciliates perform in a single cell all the functions of a pluricellular organism, including locomotion, feeding, digestion, and sexual processes.

Results

After generating the model, we performed an in-silico simulation with the presence and absence of glucose. The lack of this nutrient caused a 32.1% reduction rate in biomass synthesis. Despite the glucose starvation, the growth did not stop due to the use of alternative carbon sources such as amino acids.

Conclusions

The future models obtained from CiliateGEM may represent a new approach to describe the metabolism of ciliates. This tool will be a useful resource for the ciliate research community in order to extend these species as model organisms in different research fields. An improved understanding of ciliate metabolism could be relevant to elucidate the basis of biological phenomena like genotype-phenotype relationships, population genetics, and cilia-related disease mechanisms.
  相似文献   

12.
利用蛋白银技术研究了海洋纤毛虫—海洋尾丝虫无性生殖期间的口器发生过程。结果显示其口器发生与已知的同属种类具相似的过程和形式。其口器发生及演化的基本模式可表示如下 :后仔虫的小膜 1、小膜 2来源于老口侧膜后段的增殖 ;后仔虫的口侧膜及盾片来源于老口侧膜前段的增殖 ;后仔虫的小膜 3来自于老口区盾片的增殖 ;前仔虫的口侧膜及盾片来源于老口侧膜 ,三片小膜在口器发生过程中被保留。文中根据现有的形态发生资料对尾丝虫科的系统关系进行了探讨  相似文献   

13.
SYNOPSIS. Structure of the vegetative and asexually dividing forms of the large ciliate Climacostomum virens is redescribed with emphasis on stomatogenesis. These findings are discussed in relation to the taxonomic and possible evolutionary position of Climacostomum among heterotrichous ciliates. Comparative considerations of the buccal and somatic structures as well as of the stomatogenic patterns in this and other closely related ciliate genera indicate the need for placing Climacostomum and Fabrea in a new family, CLIMACOSTOMIDAE . The morphologic evidence suggests that Climacostomum may represent a line linking Fabrea and Stentor.  相似文献   

14.
The modes of pattern regulation found in the ciliates Dileptus and Paraurostyla are compared. These forms are systematically distant but both possess very extensive regenerative capacities. They are characterized by 2 types of ciliary patterns: the ciliature of Dileptus has largely a simple pattern composed of single kinetosomes while that of Paraurostyla has a complex pattern composed of aggregates of kinetosomes interconnected by amorphic matter. In both ciliates a change in cell size evokes pattern regulation which differs substantially in the extent of pattern replacement, timing, and localization of morphogenetic activities. It is concluded that these differences result from the pattern constituents.  相似文献   

15.
Morphogenesis and pattern formation are vital processes in any organism, whether unicellular or multicellular. But in contrast to the developmental biology of plants and animals, the principles of morphogenesis and pattern formation in single cells remain largely unknown. Although all cells develop patterns, they are most obvious in ciliates; hence, we have turned to a classical unicellular model system, the giant ciliate Stentor coeruleus. Here we show that the RNA interference (RNAi) machinery is conserved in Stentor. Using RNAi, we identify the kinase coactivator Mob1—with conserved functions in cell division and morphogenesis from plants to humans—as an asymmetrically localized patterning protein required for global patterning during development and regeneration in Stentor. Our studies reopen the door for Stentor as a model regeneration system.  相似文献   

16.
SYNOPSIS Cortical events occurring in the course of regeneration in Condylostoma magnum (Spiegel) were studied by electron microscopy. The zone of regeneration is very rich in vacuoles and small vesicles formed from the plasma membrane. Multiplication of kinetosomes starts on the left side of kineties in the V-shaped left ventral area, normally implicated in stomatogenesis, at the level of the anterior kinetosomes of the somatic pairs. The proliferation proceeds by the appearance of young kinetosomes most often orthogonal to the old ones. This process of multiplication is very rapid and terminates in the formation of an “anarchic field” in which one observes that: (a) the newly formed kinetosomes do not possess all the associated postciliary fibers; and (b) when these fibers are detected, the kinetosomes are not in the same orientation. Differentiation of the adoral organelles takes place in the left part of the field (left primordium) by an alignment of the kinetosomes into 2 rows for each organelle (oriented perpendicularly to the antero-posterior axis of the ciliate), of which only one has the postciliary fibers. Ciliatogenesis occurs in numerous kinetosomes of the anarchic field; in certain kinetosomes it is achieved at the onset of their arrangement into organelles and is concomitant with growth of the nematodesmata. The 3rd (anterior) row of the organelles, the interkinetosomal desmata, and connections among neighboring organelles appear only secondarily. Differentiation of the paroral cilia occurs later. It takes place in the interior of the primordium, whose organization is primarily anarchic, and is accompanied by a progressive resorption of the major part of the newly formed kineties. Numerous kinetosomes of the right field have the associated postciliary fibers, which are not found at the level of the regenerated “polystichomonad” (paroral organization characteristic of C. magnum). Finally, the formation of new kinetosomes within a somatic kinety at the time of its elongation is described.  相似文献   

17.
Esteban GF  Fenchel T  Finlay BJ 《Protist》2010,161(5):621-641
Mixotrophy is the occurrence of phagotrophy and phototrophy in the same organism. In ciliates the intracellular phototroph can be unicellular green algae (zoochlorellae), dinoflagellates (zooxanthellae), cryptomonads or sequestered chloroplasts from ingested algae. An intermediate mixotrophic mechanism is that where the phagotroph ingests algal cells, maintains them intact and functional in the cytoplasm for some time, but the algae are afterwards digested. This seems to occur in some species of Mesodinium. Ciliates with phototrophic endosymbionts have evolved independently in marine and freshwater habitats. The enslaved algal cells or chloroplasts provide host cells with organic matter. Mixotrophs flourish in oxygen-rich, but also in micro-aerobic waters and in the complete absence of oxygen. In the latter case, the aerobic host retains aerobic metabolism, sustained by the oxygen produced by the phototrophic endosymbionts or the sequestered chloroplasts. Mixotrophic ciliates can attain spectacular abundances in some habitats, and entirely dominate the ciliate community.  相似文献   

18.
为了了解土壤纤毛虫群落对退耕还林区生态恢复下土壤环境变化的响应及尝试利用土壤纤毛虫群落特征评价退耕还林生态恢复的效果,于2010年3月至9月采用"非淹没培养皿法"、活体观察法、蛋白银染色法和Foissner计数法对甘肃陇南武都退耕还林区5个不同恢复阶段的样点和1个荒草坡对照样点的土壤纤毛虫群落特征进行了研究,同时测定了p H值、温度、含水量及速效磷、有效钾、铵态氮、有机质和有机碳含量等土壤环境因子并分析了生态恢复条件下土壤纤毛虫群落特征与土壤环境因子的相关性。研究中共鉴定到71种纤毛虫,隶属于3纲、10目、22科、29属。研究发现,不同恢复年限的土样中土壤纤毛虫的物种分布存在明显差异,并随恢复时间的延长,样点间物种相似性减小,群落组成复杂化,物种数、种群密度和物种多样性指数总体均呈增长趋势。优势类群也发生了演替,由恢复初期的肾形目演替到后期的下毛目。相关性分析结果表明,在生态恢复条件下,土壤有机质和铵态氮含量是影响土壤纤毛虫群落结构稳定性的主要因素,不同纤毛虫类群对生态恢复的响应存在差异。冗余分析显示,土壤纤毛虫群落很好地响应了生态恢复过程中土壤环境条件的变化。  相似文献   

19.
SYNOPSIS. The modes of pattern regulation found in the ciliates Dileptus and Paraurostyla are compared. These forms are systematically distant but both possess very extensive regenerative capacities. They are characterized by 2 types of ciliary patterns: the ciliature of Dileptus has largely a simple pattern composed of single kinetosomes while that of Paraurostyla has a complex pattern composed of aggregates of kinetosomes interconnected by amorphic matter. In both ciliates a change in cell size evokes pattern regulation which differs substantially in the extent of pattern replacement, timing, and localization of morphogenetic activities. It is concluded that these differences result from the pattern constituents.  相似文献   

20.
Transmission and scanning electron microscopy of specimens of Paramecium multimicronucleatum treated with the Rio-Hortega silver-impregnation method as modified by Fernández-Galiano demonstrate that considerable deposition of silver occurs around the kinetosomes, especially at the level of the basal plate and also at the proximal end of the kinetosome. In addition, silver is heavily deposited within the kinetodesmal fibers, in the fibrous matrix that surrounds the postciliary and transverse microtubules, in the connective structures observed between the two kinetosomes of a pair and between the kinetodesmal fiber and the anterior kinetosome, and in the trichocysts. Differences and similarities in sites of deposit when other methods of silver impregnation are employed are discussed and the particular value of the present technique in studies of ciliate systematics and phytogeny is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号