首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wolffiella hyalina 7378, a member of the Lemnaceae, does notflower in the basal media of Bonner-Devirian, Hoagland, Hutner(1/2 strength), M medium of Hillman or Pirson-Seidel under eitherlong or short day photoperiodic regimes. Well-known chelatingagents, such as EDTA, EDDHA and 8-hydroxyquinoline, which havebeen shown to significantly influence flowering in other membersof the Lemnaceae, also do not show any effect in this strain.It is, however, noteworthy that W. hyalina 7378 flowers profuselyunder a short-day photoperiodic schedule of 8 h light and 16h darkness provided that 10–5 M salicylic acid is supplementedto modified Bonner and Devirian medium. The critical daylengthof W. hyalina 7378 is 13 h. Further, at least two inductivephotocycles are required for initiation of flowering. As tothe mechanism of SA action, it appears that SA effect on floweringis hormonal in nature rather than due to chelation of metalions. (Received August 25, 1986; Accepted January 9, 1987)  相似文献   

2.
COCKSHULL  K. E. 《Annals of botany》1979,44(4):451-460
The short-day plant Chrysanthemum morifolium cv. Polaris initiatedflower buds in all irradiances of continuous light from 7.5to 120 W m–2. As the irradiance increased, the transitionto reproductive development began earlier and the number ofleaves initiated before the flower bud was reduced. The autumn-floweringcultivars Polaris and Bright Golden Anne, and the summer-floweringGolden Stardust were also grown in continuous light at differenttemperatures; all initiated flower buds at temperatures from10 to 28 °C but only the buds of Golden Stardust developedto anthesis and then only at 10 and 16°C. Flower initiationbegan earliest at 16–22 °C, and the number of leavesformed before the flower bud was increased at 28°C. GoldenStardust was exceptional in that the number of leaves formedwas also increased at 10 °C. Axillary meristems adjacentto the terminal meristem initiated flower buds rapidly at 10°C but not at 28 °C in all three cultivars. These resultsare discussed in relation to the autonomous induction of flowerinitiation and the effects of the natural environment on floweringof chrysanthemum. Chrysanthemum morifolium Ramat, flowering, irradiance, temperature  相似文献   

3.
Two strongly differentiated climatic races of the Mimulus cardinalis-lewisiicomplex were grown at a variety of temperatures (3–27°C)and photoperiods (8 and 16 hr) under controlled environmentalconditions. M. cardinalis (the lowland race, 400 m) and M. lewisii(the sub-alpine race, 3200 m) were found to differ in theirphysiological responses to the varied environments in severalsignificant ways: 1) At 27°C (16 hrphotoperiod), M. lewisiisustained 100% mortality in contrast to the substantial growthand flowering of M. cardinalis under these conditions; 2) In8 hr photoperiods at all temperatures, there was little growthand no flowering in M. lewisii whereas there was considerablegrowth at all temperatures, and flowering at 23 and 27°Cin M. cardinalis; 3) At low temperatures (7–15°C),16 hr photoperiods, flowering occurred a week or two earlierin M. lewisii than in M. cardinalis. The lowland race has asignificantly wider temperature and photoperiodic tolerancethan has the sub-alpine race. Applications of gibberellic acidto rosette Mimulus plants under non-inductive conditions (15°C,8 hr photoperiod) promoted vigorous stem elongation withoutflowering. The application of steroids, other hormones and metaboliteshad no observable effects. 1Present address: Faculty of Botany, Ohio State University,Columbus, Ohio, U.S.A. (Received March 16, 1970; )  相似文献   

4.
The response of individual Cryptomonas cells to continuous lightwas recorded using infrared video-micrography. Swimming directionsand temporal shifts in swimming direction of each cell weremeasured. White light of 0.1–1 W m–2 elicited apositive phototactic orientation, but did not induce any photophobicresponse. Light of 100 W m–2 induced a photophobic responseat the onset of actinic irradiation, but did not induce positivephototactic orientation. No correlation between positive phototacticorientation and photophobic response was found in this species.The direction toward the light source was defined as 0°,and the direction away from the source as 180°. Within 2s after the onset of lateral monochromatic light of 570 nm at0.1 W m–2, cells which were swimming in a direction ofless than 120° predominantly shifted their course towardthe light source. Cells swimming in directions of larger than120° shifted their course as randomly as those in the dark.Thus, for phototactic orientation, the cells must perceive thelight from their anterior side. (Received July 29, 1985; Accepted November 4, 1985)  相似文献   

5.
Lemna paucicostata, strain LP6, does not ordinarily flower underany photoperiodic schedule, when grown in the modified Bonner-Devirianmedium supplemented with 10–4 M EDTA and 1% sucrose (thisis a medium which is otherwise satisfactory for short day inductionof flowering of other strains of this duckweed). However, when the ferric citrate concentration in the culturemedium containing EDTA was raised 10-fold over that in the normalmedium, a low but significant flowering could be initiated inthis duckweed, irrespective of the length of the photoperiod.A similar flowering response was obtained when ferric citratewas replaced by ferrous sulphate or ferric chloride, therebyindicating that the inductive effect of higher level of ferriccitrate on flowering in strain LP6 is due to its iron component. Some flowering in this strain could be induced even in mediumcontaining normal level of iron, provided the level of EDTA,itself, was raised to 5?10–4 (5% flowering) or to 10–3M (12% flowering), but replacement of EDTA by EDDHA led to trulyremarkable effects. With EDDHA, flowering could be induced at very high levels (90%)under all photoperiodic regimes tried. Floral initiation couldbe obtained even with 10–6 M EDDHA, though the optimallevel ranged from 5?10–6 to 10–5 M. (Received October 4, 1985; Accepted June 26, 1986)  相似文献   

6.
One cultivar and one land-race of faba bean were subjected to18 potentially vernalizing pre-treatments (constant temperaturesof 1, 5 or 9 °C factorially combined with photoperiods of8 or 16 h d–1 for 10, 30 or 60 d), and then transferredinto four different growing regimes (‘day’/‘night’temperatures of 18/5 °C or 24/13 °C factorially combinedwith photoperiods of 11 or 16 h d–1). Control plants weregrown entirely in the latter four regimes. The times from sowingto appearance of first open flowers were recorded for all plants.Control plants of the land-race Zeidab Local flowered soonerin long days and in the warmer regime. Pre-treatment reducedthe subsequent time to flower in the four growing-on regimesbut most of the variation in the total time to first flowerfor the pre-treated plants was accounted for by differencesin the combined photothermal time accumulated in the two successiveenvironments - which was predicted by a simple photothermalmodel. Thus, there was neither a specific low-temperature nora short-day vernalization response in this accession. Similarly,no true low-temperature or short-day vernalization responsewas detected in the cv. Maris Bead. However, this UK cultivarflowered later than predicted in the 24/13 °C regime, indicatingthat the 24 °C ‘day’ temperature was supraoptimal.Delays to flowering at 24/13 °C were, however, less evidentwhen plants were grown in long days or following prolonged (30–60d) pre-treatments at cool temperatures. Viciafaba faba, bean, flowering, photoperiodism, vernalization, photothermal time, screening germplasm.  相似文献   

7.
There is a semidian (≈12 h) rhythm in the flowering response of the short-day plant Pharbitis nil Choisy following 90 min exposure to either far-red light/darkness or a temperature drop (27 °C to 12 °C) given at various times in constant conditions before an inductive dark period. This semidian rhythmic response to the temperature-drop pretreatments in the light is also evident through the inductive dark period without change of phase. Furthermore, those pretreatments which increase flowering also advance the time of maximum sensitivity to red light (R) interruptions of the dark period by up to 1.5 h and shorten the critical night length. Conversely, pretreatments which reduce flowering delay the time of maximum R inhibition by up to 1.5 h and increase the critical night length by the same amount. However the phase of a circadian rhythm of flowering response had no effect on either the time of maximum R inhibition or the critical night length. Thus, the semidian rhythm determines both the time of maximum R inhibition and the critical night length in Pharbitis. Received: 8 November 1997 / Accepted: 7 January 1998  相似文献   

8.
Submersible dives provided an opportunity to observe the opossumshrimp. Mysis relicta, in Lake Superior (64°54'N, 67°09'W,depth = 280 m). Observations included probable mating, midwaterand benthic responses, and several swimming modes. While matingthe male and female were joined in a ventral to ventral positionby interlaced thoracic appendages. During the evening ascentor predawn descent mysids actively swam vertically upwards anddownwards using their thoracic appendages which beat metachronally.When escaping from the bottom, mysids thrust their abdomensdownwards and rapidly accelerate directly forwards. The midwaterresponse, significantly slower than the benthic response, wasa jerky laterally undulatory movement which propelled the animalat a 45° angle from the forward motion. In a cruising modeMysis swims with its periopods, parallel to the bottom, at approximatespeeds of 2–5 cm–1. A remotely operated vehiclewas employed to observe mysids at close range at the sediment–waterinterface at deep-water and nearshore stations in northern LakeMichigan (44°34'N, 87°7'W, depth = 100 m, Algoma, Wisconsinharbor, depth = 20 m) during May 23–25, 1987. At the 20m inshore station mysids occurred in significant numbers duringthe day in very bright light. Mysid swimming behavior on thebottom at deep-water stations significantly fashioned the sedimentlandscape, a potentially important form of superficial bioturbation.  相似文献   

9.
A single dark period of longer than 8 hr induced flowering inLemna paucicostata 441 cultured in E medium. Monochromatic lightsof 450, 550, 650 and 750 nm with a half-power bandwidth of 9nm given for 10 min at the 8th hour of a 14-hr dark period inhibitedflowering. The fluence rates required for 50% inhibition were10, 0.5, 0.1 and 3 µmol m–2. sec–1, respectively.When applied between the 4th and the 10th hour of the dark period,lights of 450, 550 and 650 nm were inhibitory showing a maximumeffect at the 8th hour. But 750-nm light completely inhibitedflowering when applied at any time during the first 8 hr ofthe dark period. The inhibitory effect of 750-nm light givenat the beginning of the dark period was totally reversed bya subsequent exposure to 650-nm light, and the fluence-responsecurves for the effect of 750-nm light given at the 0, 4th and8th hour were essentially the same. This suggests that the presenceof PFR is crucial for the floral initiation throughout the first8 hr of the inductive dark period. The role of phytochrome inthe photoperiodic flower induction of L. paucicostata is discussed. (Received January 4, 1982; Accepted March 19, 1982)  相似文献   

10.
Abscisic acid (ABA) at 1 x 10–4 M or 3 x 10–4 Mwas applied to the apical buds of Chenopodium rubrum plantsexposed to different photoperiodic treatments and showing differentpatterns of floral differentiation. Stimulation of growth inwidth of the apical meristem of the shoot and/or inhibitionof growth in length was obtained under all photoperiodic treatments.This change of growth pattern was followed by different effectson flowering. In non-induced plants grown under continuous light ABA stimulatedpericlinal divisions in the peripheral zone and the initiationof leaves as well as the growth in width of bud primordia. Inplants induced by two short days reduced growth of the meristemcoincided with ABA application. Longitudinal growth of the meristemwas inhibited in this case and only a temporary stimulationof inflorescence formation took place. In plants induced ata very early stage, ABA exerted a strong inhibitory effect onflowering. A permanent and reproducible stimulatory effect onflowering was obtained in plants induced by three sub-criticalphotoperiodic cycles if ABA was applied to apices released fromapical dominance. In this case formation of lateral organs andinternodes was promoted by ABA and was followed by stimulatedinflorescence formation. Gibberellic acid (GA2) at 1x 10–4M or 3 x 10–4 M brought about a similar effect on floweringas ABA, although the primary growth effect was different, i.e.GA2 stimulated longitudinal growth. The effects of ABA and GA2 on floral differentiation have beencompared with earlier results obtained from auxin and kinetinapplications. These growth hormones are believed to regulateflowering by changing cellular growth within the shoot apex.Depending on the actual state of the meristem identical growthresponses may result in different patterns of organogenesisand even in opposite effects on flowering. Shoot apex, flowering, photoperiodic induction, abscisic acid, gibberellic acid, Chenopodium rubrum L.  相似文献   

11.
Frond and flower production in a long-day duckweed, Lemna gibbaG3, growing under different photoperiodic conditions in presenceand absence of varied concentrations of applied IAA, KIN andGA was investigated. The predominant actions of IAA, KIN and GA were revealed tobe respectively the depression of flowering, the promotion offrond multiplication and the enhancement of flowering. The rateof increase in FL % as an index of the concentration of floralstimulus in the tissues was curtailed greatly by IAA, to a lesserextent by KIN and little by GA. GA at 10–5 M apparentlyreduced the critical day length (12 hr) and the induction period(48 hr) by 2 and 4 hr, respectively. No vegetative growth waspromoted by KIN in the light. On the basis of these and relevant findings the sites of actionof the growth substances examined in the flowering process ofthe duckweed were suggested. (Received May 30, 1965; )  相似文献   

12.
Lemna paucicostata, normally a short-day plant, can be inducedto flower under long-day conditions by providing a cytokininin a medium containing a high level of ferric citrate (5 x 10–4M).Interestingly, when a cytokinin and EDDHA are present togetherin the medium, flowering is induced even at low levels of iron(10–5 and 5 x 10–5M ferric citrate). However, inthe absence of a cytokinin, flowering takes place only undershort days. (Received September 30, 1968; )  相似文献   

13.
EAGLES  C. F. 《Annals of botany》1973,37(2):253-262
The growth of two natural populations of cocksfoot from contrastingclimatic regions, Norway and Portugal, was studied in two photoperiodsat three temperatures with three levels of light energy (48,144, and 240 W m–2 in the wavelength interval 400–700nm). There was a consistent increase in relative growth-rate(RGR) in response to increased light energy up to 144 W m–2,but above this energy level there was either no change, or,in some treatments, a decline. Net assimilation rate (NAR) increased,whilst leaf area ratio decreased from the lowest to the highestenergy level in most treatments. The decrease of LAR with increasedlight energy could be attributed to a decrease of both leafweight ratio (LWR) and specific leaf area (SLA), a greater proportionof dry matter being distributed to plant parts other than leaf.This effect occurred although there was a positive relationshipbetween light energy and relative leaf growth-rate (RLGR). Populationdifferences in these growth attributes were most marked in thetreatments with low-temperature and short-day conditions. Theefficiency of energy conversion of visible radiation declinedfrom 3–4 per cent at the lowest energy level to 1–2per cent at the highest energy level.  相似文献   

14.
The rates of CO2 assimilation by potted spray carnation plants(cv. Cerise Royalette) were determined over a wide range oflight intensities (45–450 W m–2 PAR), CO2 concentrations(200–3100 vpm), and leaf temperatures (5–35 °C).Assimilation rates varied with these factors in a way similarto the response of single leaves of other temperate crops, althoughthe absolute values were lower. The optimal temperature forCO2 assimilation was between 5 and 10 °C at 45 W m–2PAR but it increased progressively with increasing light intensityand CO2 concentration up to 27 °C at 450 W m–2 PARand 3100 vpm CO2 as expressed by the equation TOpt = –6.47-h 2.336 In G + 0.031951 where C is CO2 concentration in vpmand I is photo-synthetically active radiation in W m–2.CO2 enrichment also increased stomatal resistance, especiallyat high light intensities. The influence of these results on optimalization of temperaturesand CO2 concentrations for carnation crops subjected to dailylight variation, and the discrepancy between optimal temperaturesfor growth and net photosynthesis, are discussed briefly  相似文献   

15.
It has been established that Kalanchoe blossfeldiana and Xanthiumpensylvanicum require CO2 during the light period of short daysfor successful photoperiodic induction of flowering, even ifall but the induced leaf are held in normal air. In X. pensylvanicumfloral induction in normal air was independent of the starchstatus of the leaves but when reserves were reduced, lack ofCO2 in the light suppressed floral induction to an even greaterextent. Injection into the induced leaf (Kalanchoe) or leaftip feeding (Xanthium) of carbohydrates, organic and amino acidsor several other metabolites failed to substitute for the CO2requirement for induction. A small response was produced by10 mg ml–1 sucrose in X. pensylvanicum while in normalair 25 parts 10–6 ATP reduced the time to flowering inK. blossfeldiana and 10–4 M proline was inhibitory. Anexperiment on the light requirement established a need for redlight ( max 660 nm) during photoperiods but red light alonedid not facilitate maximal induction. It is concluded that someearly, possibly labile, product of photosynthetic CO2 fixationis essential to floral induction in these species.  相似文献   

16.
Racial differences based on flowering response to several photoperiods were detectable in two widely separated populations of white snakeroot, Eupatorium rugosum Houtt. The most favorable photoperiod for advanced flowering in Georgia stocks was 12 hr, for those from North Dakota, 14 hr. The difference in latitude between these populations was approximately 12° and represents a mean difference of 75 days in the frost-free season. Under noninductive photoperiod a 1-hr interruption of white light in the middle of 15 hr of darkness stimulated floral initiation in North Dakota plants, whereas the same application at the beginning or at the end of the dark period failed to produce flower buds. The effect of red light (660 mμ) for 10 min given in the middle of the long night was similar to white light on the northern strain, and was negated by far-red (730 mμ). Georgia stocks initiated flowering under 15 hr of darkness but were retarded by white light applied in the middle of the period, thus differing in basic response from North Dakota plants. Red light, in contrast to effects observed in North Dakota plants, retarded initiation of flower buds. This effect was offset by far-red light. When compared with other studies on long-day and short-day species our results suggest that photoperiodic adaptations related to latitudinal distribution occur in white snakeroot. The North Dakota strain showed correspondence to long-day types while short-day tendencies were exhibited by Georgia plants.  相似文献   

17.
Effects of respiratory inhibitors on frond and flower productionin light culture of a long-day duckweed, Lemna gibba G 3, wereinvestigated. The inhibitors examined could be divided into3 groups based on their specific actions: (A) 2,4-Dinitrophenol(10–6M), arsenate (10–4M), malonate (10–2M),o-phenanthroline (10–6M), ,'-dipyridyl (10–5M) andazide (10–6M) inhibited flower production by suppressingthe rate of flower production without affecting the inductionperiod. Frond production, however, was promoted by these reagents.Effective time of application came one day after the end ofthe induction period. (B) Iodoacetate (10–6M) and fluoride(10–4M) inhibited both flower production and, less significantly,frond production. Reduced rate of flower production was responsiblefor the inhibition of flowering. Effective time of applicationpreceded by one day that of A group inhibitors. (C) Salicylaldoxime(10–6M), diethyldithiocarbamate (10–6M) and 8-hydroxyquinoline(10–7M) enhanced flower production by reducing the lengthof the induction period, and simultaneously slightly inhibitedfrond production. Effective time of application was the latterhalf of the induction period. The implications of these findingsare discussed with special reference to the component processesinvolved in photoperiodic induction of flowering in duckweed. (Received March 27, 1969; )  相似文献   

18.
Twenty-two strains ofLemna paucicostata collected from various districts in Japan are classified into 4 types having different morphological features and photoperiodic behaviors. (I) The “N-1” type, widely distributed in north and middle Japan, consists of many short-day strains with similar morphological characteristics. The strain of northern origin, however, has a shorter critical dark period than that of southern origin, and most of the strains flower in response to a single short day though some from middle Japan require 2 short days. (2) The “N-2” type, found in a limited area of northern Japan, is also a short-day type, but has very long critical dark periods and requires 3–5 short-day cycles for flowering. (3) The “S” type, distributed in southern Japan, never flowered in any photoperiod or culture conditions tested. (4) The “K” type, strain 351, collected at the experimental farm of Kyoto University, is a day-neutral type and flowers independently of photoperiod. Application of some SH inhibitors, tungstate or EDTA, or exposure to blue, far-red or low-intensity light caused daylength-independent flowering in short-day strain 6746 (California origin), but none of these treatments caused flowering in any short-day strain collected in Japan.  相似文献   

19.
Pharbitis nil, strain Violet which had been exposed to high-intensitylight (18,000 lux at 23?C) for 7 days followed by a low-temperaturetreatment (13–14?C) for 7 days initiated flower buds evenunder continuous light, but plants given these treatments inreverse order failed to bud. Three days of high-intensity lightat 23?C was most effective in promoting the flower-inducingeffect of the subsequent low-temperature period. Six days oflow temperature following the 3-day high-intensity light periodinduced near-maximum flowering response. DCMU (5?10–6M) given during the high-intensity light period inhibited flowering,but when given during or after the low-temperature period itwas ineffective. DCMU at the same concentration given before,during or after an inductive 16-hr dark period at 26?C did notinhibit flowering. Sucrose, ATP, NADPH and some other reducingagents tested did not nullify the DCMU effect nor substitutefor the effect of high-intensity light. But, the high-intensitylight effect could be substituted, at least partly, by 5-chlorosalicylicacid, 3,4-dichlorobenzoic acid and some other benzoic acid derivatives,which are highly effective in inducing long-day flowering inthe short-day plant, Lemna paucicostata. (Received October 20, 1981; Accepted February 3, 1982)  相似文献   

20.
Lemna perpusilla 6746, a short-day plant, flowered under low-intensitywhite light (10 lux)irrespective of the photoperiod. Red lightof about 20 ergs/cm2/sec also permitted flowering under continuousillumination. The effect of the low-intensity light employedwas not equivalentto that of darkness but similar to that ofblue or far-red light in photoperiodic system. (Received June 15, 1973; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号