首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogen ion activity within isolated chromaffin granules can be estimated from the distribution of the weak base methylamine and from phosphorus-31 nuclear magnetic resonance spectra of ATP contained in the granules. Following the addition of ATP to the external medium, the internal pH drops by 0.2 to 0.5 unit. This change occurs only in medium containing a permeant anion such as chloride and is abolished by an uncoupler of oxidative phosphorylation. These results indicate that the chromaffin granule membrane possess an electrogenic proton pump directed inward.  相似文献   

2.
The effect of the transmembrane potential (delta psi) and the proton concentration gradient (delta pH) across the chromaffin granule membrane upon the rate and extent of catecholamine accumulation was studied in isolated bovine chromaffin granules. Freshly isolated chromaffin granules had an intragranular pH of 5.5 as measured by [14C]methylamine distribution. The addition of ATP to a suspension of granules resulted in the generation of a membrane potential, positive inside, as measured by [14C]thiocyanate (SCN-) distribution. The addition of carboxyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a proton translocator, resulted in a reversal of the potential to negative values (measured by [3H]tetramethylphenylphosphonium (TPMP+)) approaching -90 mV. Changing the external pH of a granular suspension incubated with FCCP produced a linear perturbation in the measured potential from positive to negative values, which can be explained by the distribution of protons according to their electrochemical gradient. When ammonia (1 to 50 mM) was added to highly buffered suspensions of chromaffin granules there was a dose-dependent decrease in the transmembrane proton gradient (delta pH) and an increase in the membrane potential (delta psi). On the other hand, thiocyanate or FCCP, at varying concentration, produced a dose-related collapse of the membrane potential and had no effect upon the transmembrane proton gradient. The addition of larger concentrations of catecholamines caused a decrease in the transmembrane proton gradient and an increase in the membrane potential. Time-resolved influx of catecholamines into the granules was studied radiochemically using low external catecholamine concentrations. The accumulation of epinephrine or norepinephrine was over one order of magnitude greater in the presence of ATP than in its absence. The rate and extent of amine accumulation was found to be related to the magnitude of the membrane potential at fixed transmembrane proton concentration (delta pH) values. Likewise, the accumulation was related to the magnitude of the delta pH at fixed membrane potential values. These results suggest that the existence of both a transmembrane proton gradient and a membrane potential are required for optimal catecholamine accumulation to occur.  相似文献   

3.
Ion permeability of isolated chromaffin granules.   总被引:14,自引:0,他引:14       下载免费PDF全文
The passive ion permeability, regulation of volume, and internal pH of isolated bovine chromaffin granules were studied by radiochemical, potentiometric, gravimetric, and spectrophotometric techniques. Chromaffin granules behave as perfect osmometers between 340 and 1,000 mosM in choline chloride, NaCl, and KCl as measured by changes in absorbance at 430 nm or from intragranular water measurements using 3H2O and [14C]polydextran. By suspending chromaffin granules in iso-osmotic media of various metal ions and selectively increasing the permeability to either the cation or the anion by intrinsically permeable ions or specific ionophores, it was possible to determine by turbidity and potentiometric measurements the permeability to the counterion. These measurements indicate that the chromaffin granule is impermeable to the cations tested (Na+, K+, and H+). Limited H+ permeability across the chromaffin granule membrane was also shown by means of the time course of pH re-equilibration after pulsed pH changes in the surrounding media. The measurement of [14C]methylamine distribution indicates that a significant deltapH exists across the membrane, inside acidic, which at an external value of 6.85 has a value of 1.16. The deltapH is relatively insensitive to changes in the composition of the external media and can be enhanced or collapsed by the addition of ionophores and uncouplers. Measurement at various values of external pH indicates an internal pH of 5.5. Use of the ionophore A23187 indicates that Ca++ and Mg++ can be accumulated against an apparent concentration gradient with calcium uptake exceeding 50 nmol/mg of protein at saturation. These measurements also show that Ca++ and Mg++ are impermeable. Measurement of catecholamine release under conditions where intravesicular calcium accumulation is maximal indicates that catecholamine release does not occur. The physiological significance of the high impermeability to ions and the existence of a large deltapH are discussed in terms of regulation of uptake, storage, and release of catecholamines in chromaffin granules.  相似文献   

4.
H+ ATPase of chromaffin granules. Kinetics, regulation, and stoichiometry   总被引:5,自引:0,他引:5  
The chromaffin granule ATPase mediates an inwardly directed transport of H+ against concentration gradients, thereby forming and maintaining an electrochemical transmembrane H+ gradient. The kinetics of this ATPase, its activity modulation by changes in electrochemical H+ gradients, and the stoichiometry between H+ transport and ATP hydrolysis were studied in intact bovine chromaffin granules, resealed chromaffin granule ghosts, and highly purified fragmented chromaffin granule membranes. In fragmented membranes the H+ ATPase has a KM for ATP of 69 microM, a maximum of activity at pH 7.3, and a Vmax of 111 nmol/min/mg of protein at 20 degrees C. Trimethyl tin inhibits the ATPase at much lower concentrations than dicyclohexylcarbodiimide, whereas oligomycin, reserpine, and other inhibitors were without effect. In intact chromaffin granules, the ATPase activity was stimulated up to 300% by collapsing the H+ transmembrane gradients. H+/ATP stoichiometry was measured in resealed chromaffin ghosts devoid of ATP and catecholamines under conditions where no net pH changes occur upon ATP hydrolysis. After addition of ATP, the rates of H+ accumulation in the ghosts and ATP hydrolysis were both linear for about 60-100 s, and the ratio of H+ to ATP was 1.71. These data indicate that the H+ ATPase of chromaffin granules has both kinetic similarities and dissimilarities with other known H+ ATPases. The regulation by changes in H+ gradients and the fixed H+/ATP ratio of this ATPase is further evidence of its primary role in establishing electrogenic H+ translocation and H+ gradients in chromaffin granules.  相似文献   

5.
Abstract: Dopamine β-mdriooxygenase converts dopamine to norepinephrine in intact chromaffin granules using intragranular ascorbic acid as a cosubstrate. Mg-ATP with external ascorbic acid is required for maximal norepinephrine biosynthesis. Mechanisms to explain these requirements were investigated specifically using intact granules. The effect of Mg-ATP was independent of membrane potential (ΔΨ) because norepinephrine biosynthesis was unchanged whether ΔΨ was positive or collapsed. Furthermore, the effect of Mg-ATP was independent of absolute intragranular and extragranular pH as well as the pH difference across the chromaffin granule membrane (ΔpH). Nevertheless, norepinephrine biosynthesis was inhibited by N -ethylmaleimide, 4-chloro-7-nitrobenzofurazane, and N , N -dicyclohexylcarbodiimide, specific inhibitors of the secretory vesicle ATPase that may directly affect proton pumping. Biosynthesis occurred normally with other ATPase inhibitors that do not inhibit the ATPase in secretory vesicles. The data indicate that the effect of Mg-ATP with ascorbic acid is mediated by the granule membrane ATPase but independent of maintaining ΔΨ and ApH. An explanation of these findings is that Mg-ATP, via the granule ATPase, may change the rate at which protons or dopamine are made available to dopamine β-monooxygenase.  相似文献   

6.
Proton translocation of the bovine chromaffin-granule membrane.   总被引:3,自引:0,他引:3       下载免费PDF全文
Bovine chromaffin granules were lysed and their membranes resealed to give osmotically sensitive 'ghosts'. These swell in the presence of salts and MgATP. It is shown that this is due to proton entry accompanied by anions. The rate of swelling depends on the anion present, but swelling is not limited to media containing permeant anions. It is quite marked in solutions of sulphates, phosphates and acetates. It is not uncoupler-sensitive, suggesting that at least one component of swelling is due to coupled proton and anion entry (non-electrogenic proton translocation). Direct measurements of transmembrane pH and potential gradients generated in the presence of MgATP shows that these are rapidly established in sucrose media, and are rather little affected by the presence of salts. They contribute roughly equally to the total protonmotive force. The potential gradient is establihsed very rapidly, but the pH gradient is generated over several minutes. The gradients are not completely dissipated by uncoupler, and it is shown that, in media containing sulphate but no permeant anion, sulphate can be taken up by the 'ghosts'. There thus appear to be two mechanisms of proton translocation across the membrane, both dependent on ATP hydrolysis: an electrogenic transfer of protons, and proton movement linked to an anion transporter of broad specificity.  相似文献   

7.
The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential gradient, and that the maximal rate of accumulation may exist when both components of the protonmotive force are present.  相似文献   

8.
1H NMR measurements have been conducted at 360 MHz on isolated pig platelet dense granules. Resonances of the H8, H2 protons of the adenine ring, H1' protons of the ribose moiety, and the aromatic hydrogens of 5-hydroxytryptamine (5HT) have been identified in spectra of intact dense granules. Like the 31P resonances of the nucleotides contained in the dense granules (U?urbil et al., 1984), the line widths and the intensities of these resonances were sensitive to sample temperature and osmolarity of the suspension medium. Their chemical shifts indicate that 5HT in the granule interior is predominantly bound to the nucleotides through ring-stacking interactions. Association of 5HT with the nucleotides was also confirmed by the presence of intermolecular nuclear Overhauser effect (NOE) between 5HT and nucleotide protons. Large and negative intermolecular NOE's observed among the nucleotide H8, H2 and H1' protons, together with upfield shifts undergone by these protons within the dense granules, demonstrate that the nucleotides form a complex where they are in close proximity of each other. The formation of this complex apparently does not require the presence of amines since removal of 5HT and histamine did not change the chemical shifts of the nucleotide protons. From T1 and T2 data, rotational correlation time of 4 ns was calculated for the nucleotides in the dense granule interior at 35 degrees C. A resonance tentatively identified as H2 of histamine was found to shift upon manipulation of the intragranular pH; it was used as an indicator of pH changes within the granule interior during 5HT uptake and showed that 5HT accumulation increases the intragranular pH. These results demonstrate that 5HT is first taken up in response to the inside acidic pH gradient across the granule membrane and is subsequently sequestered in a matrix formed by the divalent cations and the nucleotides.  相似文献   

9.
The transmembrane potential of isolated chromaffin granules has been measured using the permeant ions [14C]methylamine and [35S]thiocyanate, as well as the fluorescent probe, 9-aminoacridine. At pH 7.0, the granule membrane had a Nernst proton potential of -45mV, inside negative. This potential was sensitive to the external pH, but was unaffected by K+,Na+, Ca2+, Mg2+, or other cations. The pH of zero potential was 6.25 for both methylamine and thiocyanate. Thiocyanate also had a Nernst potential of similar magnitude and sign to that of methylamine at pH 7.0, and was also sensitive to variation in external pH. Mg2+ATP was found to depolarize the granule membrane by a saturable mechanism with a K 1/2 for ATP of 40 muM. Ca2+ was only 30% as effective as Mg2+ in supporting the ATP effect. The pH optimum for this process was 6.25 and appeared to be accompanied by a marked alkalinization of the granule interior. The specificity for ATP was further tested with structural analogs of ATP and GTP. The rate of change of membrane potential in response to changes in external pH or Mg2+ATP was estimated using the fluorescent probe 9-aminoacridine. Changes came to completion in less than 1 s. This suggested that the ATP effects were not dependent on an enzymatic transformation but on an ATP-induced conformational change in the membrane. We conclude that the chromaffin granule exists in at least two proton permeability states, corresponding to the presence or absence of Mg2+ATP. These states may be related to hormone release from granules and regulation of secretion in vivo.  相似文献   

10.
P S Yoon  R R Sharp 《Biochemistry》1985,24(25):7269-7273
High-resolution proton NMR spectroscopy has been used to monitor the internal pH of chromaffin granule ghosts during Ca2+ influx through the membrane. For this purpose, ghosts were prepared by lysing and resealing chromaffin granules in a medium containing the disodium-ethylenediaminetetraacetic acid complex (Na2.EDTA). Uncomplexed EDTA and Ca.EDTA give rise to distinct sets of methylene peaks in the proton NMR spectrum. Free EDTA titrates with a pK near 6.6 in deuterated media; the chemical shifts that accompany titration have been used to monitor intravesicular pH changes which occur inside chromaffin granule ghosts as a result of ATPase activity and deprotonation of EDTA during Ca2+ influx and complex formation. ATPase activity results in an NMR-detectable proton gradient which is dissipated by nigericin. Experiments monitoring Ca2+ uptake showed that protons which are liberated inside ghosts as a result of Ca.EDTA complex formation are not extruded from the ghosts via a process coupled to Ca2+ entry. This suggests that the Ca2+ transport system of the chromaffin granule membrane occurs without concurrent proton antiport and is not directly coupled energetically to the transmembrane pH gradient.  相似文献   

11.
S. Ogawa  C. Shen  C.L. Castillo 《BBA》1980,590(2):159-169
31P-NMR has been used to study the increase of ΔpH in mitochondria by externally added ATP. Freshly prepared mitochondria was treated with N-ethylmaleimide to inhibit the exchange between internal and external Pi. Upon addition of ATP, phosphocreatine (30 mM) and creatine kinase to a NMR sample of mitochondria suspension (approx. 120 mg protein/ml) at 0°C, an increase of ΔpH by approx. 0.5 pH unit was observed. However the increased ΔpH could not be maintained, but slowly decayed along with the increase of external ADP/ATP ratio. Further addition of valinomycin to the suspension induced a larger ΔpH (approx. 1) which was maintained by the increased rate of internal ATP hydrolysis as seen in the growth of the internal Pi peak intensity in NMR spectra and the concomitant decrease of the external phosphocreatine peak. The external Pi and ATP peaks stayed virtually constant. When carboxyatractyloside was added to inhibit the ATP/ADP translocase, the internal Pi increase was stopped and the ΔpH decayed. These observations in conjunction with those made earlier in respiring mitochondria clearly show the reversible nature of the ATPase function in which the internal ATP hydrolysis is associated with outward pumping of protons.  相似文献   

12.
Nuclear magnetic resonance spectroscopy has been used to determine the composition of the aqueous phase of bovine chromaffin granules. Relative concentrations of catecholamines (epinephrine plus norepinephrine), ATP and chromogranins have been measured from integrated intensities in the proton spectra using computer simulation techniques. Most or all of the catecholamines (97 +/- 8%) are present in the aqueous phase and contribute to the high resolution spectrum. The catecholamine:ATP molar ratio (4.41 +/- 0.45) determined by NMR is close to the value (4.45) derived from biochemical assay indicating that most or all of the ATP is present with catecholamine in the aqueous phase. Catecholamine:protein ratios show that approximately 45% of the soluble protein freed by lysis is not NMR visible. Intensity from this fraction does not appear under highly denaturing conditions (8 M urea) but reappears after hydrolysis. This behavior is similar to that of recently isolated soluble lipoprotein complexes. Variations in the NMR spectra associated with (1) different preparative procedures; (2) different suspension media, and (3) increasing osmolality are described. The fact that high concentrations of epinephrine and ATP (approximately 700 mM total) are dissolved in the aqueous phase implies that solution phase interactions at least partially ionic in nature are responsible for the low internal osmolality of chromaffin granules in vivo. Ordered phases containing a substantial fraction of the total catecholamine in an osmotically inactive form are not present.  相似文献   

13.
T Takabe  G G Hammes 《Biochemistry》1981,20(24):6859-6864
The purified ATP-synthesizing complex from chloroplasts has been reconstituted into phospholipid vesicles with bacteriorhodopsin by use of octyl glucoside. Phosphorylation rates up to 90 mmol of ATP (mg of protein)-1 min-1 have been achieved. The dependence of the steady-state kinetic parameters on external and internal pH for both synthesis and hydrolysis was determined. The Michaelis constants are independent of the magnitude of the pH gradient at external pH values of 6.6 and 8.0. The dependence of the maximum velocity for ATP synthesis on the external pH is bell shaped at a constant pH gradient with a maximum at about pH 6.7. The variation of the maximum velocity with external pH is not dependent on the magnitude of the pH gradient. At external pH values of 6.6 and 8.0, the maximum velocity for ATP synthesis varies with approximately the 2.3 power of the internal hydrogen ion concentration. The maximum velocity for ATP hydrolysis also is dependent on the external pH, with a maximum at about pH 8.4; however, most of the ATPase activity is not coupled to the proton flux. Both Mg2+ and Mn2+ are good cofactors for ATP synthesis and hydrolysis whereas Ca2+ is completely ineffective for synthesis and only about 10% as effective as Mg2+ and Mn2+ for hydrolysis. The results obtained suggest that ATP synthesis or hydrolysis may be coupled to proton pumping indirectly, as, for example, by conformational changes.  相似文献   

14.
Kinetic analysis of the protonation of a surface group of a macromolecule   总被引:1,自引:0,他引:1  
High-field 31P-NMR studies of whole cells of Streptococcus faecalis have shown that delta pH can be formed by ATP hydrolysis and also by lactate transport. We have used 31P-NMR to measure the pH dependence of the variable stoichiometry of the proton/lactate carrier. At low external pH (pH approximately equal to 6.5) the influx stoichiometry was 1.1 H+/lactate, while at high pH (7.5) the ratio was almost 2; the apparent midpoint pH of this variable stoichiometry is 7. delta psi measurements support the electrogenic nature of lactate transport at high pH; the variable rate of membrane depolarization caused by lactate transport also had a midpoint near pH 7.0. The data is consistent with a symmetrical carrier operating with variable stoichiometry as proposed by Michels et al.  相似文献   

15.
The intragranular pH of isolated mast cell granules was measured. Because of the minute amounts of isolated granules available, two techniques were developed by modifying aminoacridine fluorescence and [14C]methylamine accumulation techniques to permit measurements with microliter sample volumes. Granule purity was demonstrated by electron microscopy, ruthenium red exclusion, and biochemical (histamine, mast cell granule protease) analysis. The internal pH was determined to be 5.55 +/- 0.06, indicating that the pH environment within mast cell granules is not significantly different from that of previously studied granule types (i.e., chromaffin, platelet, pancreatic islet, and pituitary granules). Collapse of the pH gradient by NH+4 was demonstrated with both techniques. No evidence of Cl-/OH- or specific cation/H+ transport was found, and major chloride permeability could not be unequivocably demonstrated. Ca2+ and Cl- at concentrations normally present extracellularly destabilized granules in the presence of NH+4, but this phenomenon does not necessarily indicate a role for these ions in the exocytotic release of granule contents from intact cells. The pH measurement techniques developed for investigating the properties of granules in mast cells may be useful for studying other granules that can be obtained only in limited quantities.  相似文献   

16.
The [14C]methylamine distribution method was utilized to measure the internal pH of isolated serotonin containing granules of pig blood platelets under varying conditions. The granules used were isolated by a new protocol which stressed platelet rupture under controlled conditions and preservation of isotonicity throughout the isolation procedure, In a well buffered external medium, pH 6.85, The deltapH was measured as 1.11 with the internal pH being found acidic (pH 5.74). Increasing the external pH produced a corresponding increase in the deltaH. The pH gradient could be collapsed by the addition of ionophores and uncouplers which are known to transport protons across biological membranes. In addition, the deltapH was constant for granules suspended in various ionic media, thus suggesting that the deltaH did not arise secondarily due to the establishment of a Donnan equilibrium. The existence of the acidic intragranular space is discussed with respect to previous ancillary findings. Also, an explication of the possible physiological significance of the deltaH is presented.  相似文献   

17.
13C labelled 1-methyl-4-phenylpyridinium ([13C-methyl]MPP+) is taken up by chromaffin granules and a signal from the methyl group within the granular matrix appears at 49.8 ppm. No shift of the [13C-Me] signal is observed upon incorporation into the granules. However the linewidth of the signal is significantly increased suggesting a restriction in the molecular motion of MPP+. Confirmation of the above derives from the determination of the T1 relaxation time of the [13C-Me] carbon of MPP+ which shows a four fold decrease upon incorporation of MPP+ into the granule. 31P NMR spectra of ATP in the presence of MPP+ reveals that the toxicant has low affinity for the nucleotide, suggesting that it is the viscosity of the granular matrix that restricts MPP+ mobility rather than a specific interaction with intragranular ATP.  相似文献   

18.
1. pH and potential gradients are generated across the membranes of chromaffin granule 'ghost' by incubating them with MgATP: the inside of the 'ghosts' is positive and acid with respect to the incubation medium. 2. The pH gradient is partially dissipated by inclusion of a substrate for the catecholamine pump, or a mitochondrial uncoupling agent, but is enhanced by reserpine. 3. An imposed pH gradient leads to amine uptake by the 'ghosts': a potential gradient leads to ATP uptake. Studies with inhibitors confirm that amine accumulation by chromaffin granules is dependent on the former, and that ATP uptake results from ATPase-induced potential difference generation. 4. ATP has two known roles in chromaffin granule structure: the first is as a substrate for a membrane-bound proton-translocating ATPase; the second is as a component of the intragranular catecholamine storage complex.  相似文献   

19.
After illumination in the presence of dithiothreitol, chloroplast thylakoids catalyze ATP hydrolysis and an exchange between ATP and Pi in the dark. ATP hydrolysis is linked to inward proton translocation. The relationships between ATP hydrolysis, ATP-Pi exchange, and proton translocation during the steady state were examined. The internal proton concentration was found to be proportional to the rate of ATP hydrolysis when these parameters were varied by procedures that do not alter the proton permeability of the thylakoid membranes. A linear relationship between the internal proton concentration and the rate of nonphosphorylating electron flow was previously verified. By determining the constant relating internal proton concentration to both ATP hydrolysis and electron flow, the proton/ATP ratio for the chloroplast ATPase complex was calculated to be 3.4 +/- 0.3. The presence of Pi, which allows ATP-Pi exchange to occur, lowers the internal proton concentration, but does not alter the relationship between the net rate of ATP hydrolysis and internal proton concentration. ATP-Pi exchange shows a dependence on the proton activity gradient very similar to that of ATP synthesis in the light. These results suggest that ATP-Pi exchange resembles photophosphorylation. In agreement with this idea, it is nucleoside diphosphate from the medium that is phosphorylated during exchange. Moreover, the energy-linked incorporation of Pi and ADP into ATP during exchange occurs at a similar rate. Thus, ATP synthesis from medium ADP and Pi takes place at the expense of the pH gradient generated by ATP hydrolysis.  相似文献   

20.
Adrenal chromaffin granules must shuttle reducing equivalents from the cytosol inward to reduce ascorbic acid oxidized during norepinephrine biosynthesis by intragranular dopamine-beta-hydroxylase. A transmembrane electron shuttle between the external (cytosolic) and intragranular ascorbate pools was demonstrated in vitro in intact bovine chromaffin granules undergoing tyramine- or dopamine-stimulated dopamine-beta-hydroxylase turnover. Incubation of intact chromaffin granules with tyramine results in a time-dependent decrease in reduced intragranular ascorbate and production of octopamine. The rate of ascorbate oxidation is a function of the extragranular concentrations of tyramine over the range 50 microM to 2 mM and is 95% inhibited by addition of the dopamine-beta-hydroxylase inhibitor disulfiram. The stoichiometry of octopamine synthesized/ascorbate oxidized closely approximates unity. The presence of extragranular dopamine also induces oxidation of intragranular ascorbate which is inhibited by blocking dopamine transport with reserpine. On the other hand, incubation with octopamine, which is also transported by the granules, causes no net decrease in reduced intragranular ascorbate. The presence of 400 microM extragranular ascorbate abolishes the observed tyramine-induced intragranular ascorbate oxidation. The addition of ascorbate extragranularly 30 min after addition of tyramine reverses the oxidation of intragranular ascorbate. The measurement of [14C]ascorbate distribution ratios in granule pellets and supernatants indicates that there is no transmembrane transport of ascorbate. Extravesicular NADH had no significant effect on matrix ascorbate levels during beta-hydroxylation. These data provide new in vitro evidence that chromaffin granules shuttle reducing equivalents inwardly from an extra- to an intravesicular ascorbate pool and that cytosolic ascorbate is the source of the intragranular reducing equivalents required during norepinephrine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号