首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid hydrolysis of cell wall-rich material from young leaves of the lycophyte Selaginella apoda (L.) Spring yielded substantial amounts of 3-O-methyl-D-galactose (1) in addition to the usual major monosaccharides (glucose, galactose, arabinose, xylose and galacturonic acid). The yield of 1 approximately equalled that of galacturonic acid. Compound 1 was identified as 3-O-methylgalactose by its 1H and 13C NMR spectra, and shown to be the D-enantiomer by its susceptibility to D-galactose oxidase. Compound 1 was detected in acid hydrolysates of the alcohol-insoluble residues from young leaves of all lycophytes tested, both homosporous (Lycopodium, Huperzia and Diphasiastrum) and heterosporous (Selaginella). It was not detectable in the charophyte green algae Coleochaete scutata, Chara coralina or Klebsormidium flaccidum, any bryophytes [a hornwort (Anthoceros), four liverworts and three mosses], or any euphyllophytes [a psilopsid (Psilotum), a horsetail (Equisetum), eusporangiate and leptosporangiate ferns, the gymnosperm Gnetum, and diverse angiosperms]. A high content of 1 is thus an autapomorphy of the lycophytes.  相似文献   

2.
The structure of the mature leaves of 13 species from 9 families of homosporous leptosporangiate ferns was examined by light and electron microscopy. In 11 species (Adiantum pedatum L., Athyrium angustum Roth., Cyathea dregei Sm., Lygodium palmatum Sw., Mohria caffrorum (L.) Desv., Oleandra distenta Kuntae, Pellaea calomelanos (Sw.) Link, Pityrogramma calomelanos (L.) Link var. austro-americana (Domn.) Farw., Trichomanes melanotrichum Schlechtend., Vittaria guineensis Desv., and Woodwardia orientalis Sw.) the lamina veins are collateral; in two (Phlebodium aureum and Platycerium bifurcatum), bicollateral as well as collateral veins are present. The vascular bundles in the midribs of C. dregei and those in the petioles and midribs of Phlebodium and Platycerium are concentric. All of the vascular bundles in the homosporous leptosporangiate ferns studied are delimited by a tightly arranged cylinder of endodermal cells with Casparian strips. Within the veins without parenchymatic xylem sheaths, some sieve elements commonly abut tracheary elements with hydrolyzed primary walls. The majority of vascular parenchyma cells contact both sieve elements and tracheary elements, although some parenchyma cells are associated with only one type of conducting cell. Transfer cells (parenchyma cells with wall ingrowths) occur in the veins of 6 species examined. Most of the vascular parenchyma cells, however, have no distinctive structural characteristics. The sieve elements of the homosporous leptosporangiate ferns are very similar structurally and each consists of a plasmalemma, a parietal, anastomosing network of smooth endoplasmic reticulum (ER), and variable numbers of refractive spherules, plastids and mitochondria. The sieve elements of L. palmatum also contain plasmalemma tubules. The parenchymatic cells of the leaf (mesophyll, endodermal and vascular parenchyma cells) are united by desmotubule-containing plasmodesmata. The sieve elements are connected to each other by sieve pores and to parenchymatic cells by pore-plasmodesma connections. The sieve-area pores contain variable amounts of membranous material, apparently ER membranes, but do not occlude them. These membranes commonly are found in continuity with the parietal ER of the lumen. Based upon the relative frequencies of cytoplasmic connections between cell types, the photosynthates may move from the mesophyll to the site of phloem loading via somewhat different pathways in different species of homosporous leptosporangiate ferns.  相似文献   

3.
The phylogenetic structure of ferns (= monilophytes) is explored here, with a special focus on the early divergences among leptosporangiate lineages. Despite considerable progress in our understanding of fern relationships, a rigorous and comprehensive analysis of the early leptosporangiate divergences was lacking. Therefore, a data set was designed here to include critical taxa that were not included in earlier studies. More than 5000 bp from the plastid (rbcL, atpB, rps4) and the nuclear (18S rDNA) genomes were sequenced for 62 taxa. Phylogenetic analyses of these data (1) confirm that Osmundaceae are sister to the rest of the leptosporangiates, (2) resolve a diverse set of ferns formerly thought to be a subsequent grade as possibly monophyletic (((Dipteridaceae, Matoniaceae), Gleicheniaceae), Hymenophyllaceae), and (3) place schizaeoid ferns as sister to a large clade of "core leptosporangiates" that includes heterosporous ferns, tree ferns, and polypods. Divergence time estimates for ferns are reported from penalized likelihood analyses of our molecular data, with constraints from a reassessment of the fossil record.  相似文献   

4.
Abstract Mating systems of 18 species of homosporous ferns follow a bimodal distribution, similar to that observed for seed plants (Schemske and Lande, 1985). Most species are highly outcrossing, a few are inbreeding, and two species examined to date have mixed mating systems. Equisetum arvense and several species of lycopods are also highly outcrossing. Several mechanisms, including inbreeding depression, antheridiogen, and ontogenetic sequences that result in effectively unisexual gametophytes, promote outcrossing in homosporous ferns and perhaps other homosporous pteridophytes as well. In some species of homosporous ferns, selection has favored the evolution of inbreeding as an adaptation for colonization. High levels of intra- and interpopulational gene flow via spore dispersal, coupled with high levels of intergametophytic crossing, generally lead to genetically homogeneous populations and species of homosporous ferns. However, rock-dwelling ferns and ferns from xeric habitats may exhibit significant population genetic structure due to physically patchy habitats. Reticulate evolution in homosporous ferns may be enhanced by high levels of intergametophytic crossing.  相似文献   

5.
The growth of land plants depends on stem cell-containing meristems which show major differences in their architecture from basal to higher plant species. In Arabidopsis, the stem cell niches in the shoot and root meristems are promoted by WUSCHEL (WUS) and WOX5, respectively. Both genes are members of a non-ancestral clade of the WUS-related homeobox (WOX) gene family, which is absent in extant bryophytes and lycophytes. Our analyses of five fern species suggest that a single WUS orthologue was present in the last common ancestor (LCA) of leptosporangiate ferns and seed plants. In the extant fern Ceratopteris richardii, the WUS pro-orthologue marks the pluripotent cell fate of immediate descendants of the root apical initial, so-called merophytes, which undergo a series of stereotypic cell divisions and give rise to all cell types of the root except the root cap. The invention of a WUS-like function within the WOX gene family in an ancestor of leptosporangiate ferns and seed plants and its amplification and sub-functionalisation to different stem cell niches might relate to the success of seed plants, especially angiosperms.  相似文献   

6.
Amatangelo KL  Vitousek PM 《Oecologia》2008,157(4):619-627
We asked if element concentrations in ferns differ systematically from those in woody dicots in ways that could influence ecosystem properties and processes. Phylogenetically, ferns are deeply separated from angiosperms; for our analyses we additionally separated leptosporangiate ferns into polypod ferns, a monophyletic clade of ferns which radiated after the rise of angiosperms, and all other leptosporangiate (non-polypod) ferns. We sampled both non-polypod and polypod ferns on a natural fertility gradient and within fertilized and unfertilized plots in Hawaii, and compared our data with shrub and tree samples collected previously in the same plots. Non-polypod ferns in particular had low Ca concentrations under all conditions and less plasticity in their N and P stoichiometry than did polypod ferns or dicots. Polypod ferns were particularly rich in N and P, with low N:P ratios, and their stoichiometry varied substantially in response to differences in nutrient availability. Distinguishing between these two groups has the potential to be useful both in and out of Hawaii, as they have distinct properties which can affect ecosystem function. These differences could contribute to the widespread abundance of polypod ferns in an angiosperm-dominated world, and to patterns of nutrient cycling and limitation in sites where ferns are abundant.  相似文献   

7.
Studies on chloroplast genomes of ferns and lycophytes are relatively few in comparison with those on seed plants. Although a basic phylogenetic framework of extant ferns is available, relationships among a few key nodes remain unresolved or poorly supported. The primary objective of this study is to explore the phylogenetic utility of large chloroplast gene data in resolving difficult deep nodes in ferns. We sequenced the chloroplast genomes from Cyrtomium devexiscapulae(Koidz.) Ching (eupolypod I) and Woodwardia unigemmata (Makino) Nakai (eupolypod II), and constructed the phylogeny of ferns based on both 48 genes and 64 genes. The trees based on 48 genes and 64 genes are identical in topology, differing only in support values for four nodes, three of which showed higher support values for the 48-gene dataset. Equisetum L. was resolved as the sister to the Psilotales–Ophioglossales clade, and Equisetales–Psilotales–Ophioglossales clade was sister to the clade of the leptosporangiate and marattioid ferns. The sister relationship between the tree fern clade and polypods was supported by 82% and 100% bootstrap values in the 64-gene and 48-gene trees, respectively. Within polypod ferns, Pteridaceae was sister to the clade of Dennstaedtiaceae and eupolypods with a high support value, and the relationship of Dennstaedtiaceae–eupolypods was strongly supported. With recent parallel advances in the phylogenetics of ferns using nuclear data, chloroplast phylogenomics shows great potential in providing a framework for testing the impact of reticulate evolution in the early evolution of ferns.  相似文献   

8.
The flavonoids of the primitive leptosporangiate ferns Stromatopteris moniliformis, Schizaea bifida, Gleichenia cunninghamii, Cardiomanes reniforme, and Hymenophyllum demissum have been identified as 3-O-glycosides of the flavonols kaempferol and quercetin. None of the examined ferns produced flavonoids which are also common to the Psilotoceae. The Psilotaceae have previously been shown to produce O-glycosides of amentoflavone (biflavone) and apigenin (flavone) and traces of C-glycosylflavones (Wallace and Markham, 1978). These data imply that the primitive leptosporangiate ferns are not closely related to the Psilotaceae. The antiquity of rhamnose as a glycosyl moiety is suggested by its occurrence in both the primitive leptosporangiate ferns and in the Psilotaceae.  相似文献   

9.
In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.  相似文献   

10.
Xishuangbanna lies in the south of Yunnan. The composition and distributive regulation of lycophytes and ferns in Xishuangbanna are studied in this paper. As a result, 363 species of wild lycophytes and ferns which belong to 76 genera and 31 families are found in this area. The six species rich families are Polypodiaceae, Athyriaceae, Thelypteridaceae, Aspleniaceae, Pteridaceae and Selaginellaceae. The geographical distribution of the species shows that this flora mainly consists of Tropical Asia elements. Terrestrial species are the richest of this flora, followed by epiphytic and lithophytic species. The lycophytes and ferns resources of Xishuangbanna are abundant. However, the exploitation and utilization of this group of plants are ignored. This study investigated lycophytes and ferns resources of Xishuangbanna. Medicinal, edible and ornamental ferns in Xishuangbanna have been clearly researched and their utilization and protection have been discussed.  相似文献   

11.
石松类和蕨类植物的主要分类系统的科属比较   总被引:1,自引:0,他引:1  
石松类和蕨类植物在秦仁昌(1978)系统、《中国蕨类植物科属志》、《中国植物志》、Christenhusz维管植物线性排列系统中和“FloraofChina”的科属组成、数量存在很大差异。秦仁昌(1978)系统收录63科223属,《中国蕨类植物科属志》63科226属,《中国植物志》61科220属、Chnstenhusz线性排列系统38科163属和“FloraofChina”38科177属。本文通过比较石松类和蕨类植物的几个主要分类系统中科属的变动情况,拟为新一代植物志(iFlora)中石松类和蕨类植物的编研提供依据。同时,还指出了几个主要的分类系统中关于中文名、拉丁名以及命名人的不一致和错误.为进一步研究提供检索和鉴定参考。  相似文献   

12.
石松类和蕨类植物是维管植物的第二大类群, 其起源可追溯到4亿年前。在被子植物出现之前, 石松类和蕨类植物在古地球生态系统中占主导地位, 其重要性一直延续到现在。自20世纪40年代开始, 中国石松类和蕨类植物研究就令世界瞩目, 尤其是2017年第19届国际植物学大会在中国深圳召开后的5年时间里, 中国石松类和蕨类植物研究更是面向世界、走向国际, 研究更为广泛的科学问题, 在物种多样性、保护、系统演化和生态适应性等方面取得了一系列重要研究进展。2017-2022年, 多个中国研究团队利用多组学数据构建了世界石松类和蕨类植物科级水平的生命之树并提出了关键性状孢子囊环带演化的新模式; 解决了石松类和蕨类植物中目级、科级、属级和种级众多关键的系统分类学等问题, 发表了106个新分类群; 开展了大量的植物区系调查和研究, 出版了6部中国石松类和蕨类植物多样性专著和1部世界性专著; 对65种国家重点保护的石松类和蕨类植物进行了迁地保护, 同时实现了桫椤科、水蕨属(Ceratopteris)、观音座莲属(Angiopteris)和鹿角蕨(Platycerium wallichii)等重点保护类群的孢子繁殖; 在系统发育框架下, 研究了石松类和蕨类植物的生态修复功能和生态适应性演化。通过对2017-2022年研究成果的总结和思考, 本文对未来石松类和蕨类植物的发展提出以下建议: (1)提高中国寡型科属以及世界性大科大属的关注力度; (2)加强西藏、四川等薄弱地区石松类和蕨类植物的调查研究, 并结合新技术, 如DNA条形码等以提高区系调查中物种鉴别的效率和准确性; (3)运用多学科交叉的研究方法厘清各科、属、种间系统关系的同时, 还应加强系统和生态适应性演化之间的协同研究; (4)关注石松类和蕨类植物系统位置作为陆生维管植物演化起点的共性科学问题; (5)加强石松类和蕨类植物系统分类学与生态学、植物化学、保护生物学等学科间交叉合作研究。  相似文献   

13.
Experimental Studies of Apospory in Ferns   总被引:3,自引:0,他引:3  
Apospory in Pteridium aquilinum was found to have several novelfeatures, in particular the rapidity of its occurrence. Outgrowthsfrom detached laminae were detected in as little as 3 days.There was no evidence that failure of co-ordination betweencells, senescence of the sporophytic tissue or unfavourableculture conditions effected the initiation of outgrowths asearlier workers have suggested. The response of Thelypterispalustris was notably slower and more in line with earlier reportsof apospory. Marsilea vestita appeared to be incapable of anyform of aposporous behaviour. The only feature common to all occurrences of apospory in leavesof wild-type ferns is the severance of the lamina from the mainbody of the plant. It is proposed that this may deprive thecells of regulatory substances which maintain the activationof sporophytic genes. The results are also considered in relationto the phase changes in homosporous and heterosporous plantsand the behaviour of fern protoplasts in culture. apospory, ferns, Pteridium aquilinum, Marsilea vestita, Thelypteris palustris  相似文献   

14.
Meiosis in homosporous ferns allows chromosomes to pair within homoeologous sets rather than restricting pairing to homologs; this allows homozygous spore mother cells to give rise to genetically heterogeneous meiospores. It is envisioned that such a meiotic system has evolved in homosporous ferns in response to a life cycle which allows the attainment of total homozygosity in one generation of selfing.  相似文献   

15.
Punta Lara Natural Reserve shelters the relict of the Southernmost riparian forest in the world, where the flora is threatened by the anthropic expansion and by the introduction of exotic species. In this area the ferns and lycophytes grow in particular environments as marshland, grassland and marginal forest. The aim of this work was to evaluate the diversity of ferns and lycophytes that inhabit in Punta Lara Natural Reserve. Field trips were conducted from 2006 to 2009 and local herbaria and specific bibliography were also revised. As a result of our study twenty four taxa of ferns and lycophytes were recognized. Their habit was mainly terrestrial (70%), fewer aquatic (17%) and epiphytic (13%). Five native taxa were scarcely recorded whereas two native species previously documented were not found. We assume that the main threats on ferns and lycophytes populations in Punta Lara Reserve are: removal for comercialization, invasion by exotic species and climatic fluctuations (drought periods). Keys for taxa identification are given and strategies for the conservation of threatened taxa are proposed.  相似文献   

16.
Noncoding DNA sequences from numerous regions of the chloroplast genome have provided a significant source of characters for phylogenetic studies in seed plants. In lycophytes and monilophytes (leptosporangiate ferns, eusporangiate ferns, Psilotaceae, and Equisetaceae), on the other hand, relatively few noncoding chloroplast DNA regions have been explored. We screened 30 lycophyte and monilophyte species to determine the potential utility of PCR amplification primers for 18 noncoding chloroplast DNA regions that have previously been used in seed plant studies. Of these primer sets eight appear to be nearly universally capable of amplifying lycophyte and monilophyte DNAs, and an additional six are useful in at least some groups. To further explore the application of noncoding chloroplast DNA, we analyzed the relative phylogenetic utility of five cpDNA regions for resolving relationships in Botrychium s.l. (Ophioglossaceae). Previous studies have evaluated both the gene rbcL and the trnL(UAA)-trnF(GAA) intergenic spacer in this group. To these published data we added sequences of the trnS(GCU)-trnG(UUC) intergenic spacer + the trnG(UUC) intron region, the trnS(GGA)-rpS4 intergenic spacer+rpS4 gene, and the rpL16 intron. Both the trnS(GCU)-trnG(UUC) and rpL16 regions are highly variable in angiosperms and the trnS(GGA)-rpS4 region has been widely used in monilophyte phylogenetic studies. Phylogenetic resolution was equivalent across regions, but the strength of support for the phylogenies varied among regions. Of the five sampled regions the trnS(GCU)-trnG(UUC) spacer+trnG(UUC) intron region provided the strongest support for the inferred phylogeny.  相似文献   

17.
Using DNA sequence data from multiple genes (often from more than one genome compartment) to reconstruct phylogenetic relationships has become routine. Augmenting this approach with genomic structural characters (e.g., intron gain and loss, changes in gene order) as these data become available from comparative studies already has provided critical insight into some long-standing questions about the evolution of land plants. Here we report on the presence of a group II intron located in the mitochondrial atp1 gene of leptosporangiate and marattioid ferns. Primary sequence data for the atp1 gene are newly reported for 27 taxa, and results are presented from maximum likelihood-based phylogenetic analyses using Bayesian inference for 34 land plants in three data sets: (1) single-gene mitochondrial atp1 (exon+intron sequences); (2) five combined genes (mitochondrial atp1 [exon only]; plastid rbcL, atpB, rps4; nuclear SSU rDNA); and (3) same five combined genes plus morphology. All our phylogenetic analyses corroborate results from previous fern studies that used plastid and nuclear sequence data: the monophyly of euphyllophytes, as well as of monilophytes; whisk ferns (Psilotidae) sister to ophioglossoid ferns (Ophioglossidae); horsetails (Equisetopsida) sister to marattioid ferns (Marattiidae), which together are sister to the monophyletic leptosporangiate ferns. In contrast to the results from the primary sequence data, the genomic structural data (atp1 intron distribution pattern) would seem to suggest that leptosporangiate and marattioid ferns are monophyletic, and together they are the sister group to horsetails--a topology that is rarely reconstructed using primary sequence data.  相似文献   

18.
While homosporous ferns are potentially capable of producing totally homozygous sporophytes in one generation via selfing of their bisexual gametophytes, laboratory analyses indicate that a variety of mechanisms promote gametophytic outcrossing. The operation of these mechanisms in natural sporophyte populations, however, has not been previously demonstrated. Laboratory analyses of gametophyte ontogeny show that Bommeria hispida is obligately outcrossing. Electrophoretic data presented here indicate that individuals from natural sporophyte populations of this species are highly heterozygous. Electrophoretic data, therefore, corroborate evidence from the in vitro analysis of gametophyte development and demonstrate that sporophytes of B. hispida in nature typically are products of outcrossing between genetically different gametophytes. Extrapolations from the literature, together with our findings, indicate that outcrossing mechanisms may operate frequently in ferns, thereby maintaining genetic variability between individuals within populations. This evidence questions whether most ferns are highly inbred and therefore predominantly homozygous.  相似文献   

19.
The development of the egg and canal cells in the fern Osmunda japonica Thunb. was studied during oogenesis by transmission electron microscopy. The mature egg possesses no fertilization pore and no typical egg envelope. In addition, an extra wall formed around the canal cells during oogenesis and apparently blocked protoplasmic connections between the egg and the canal cells. The periodic acid Schiff (PAS) reaction revealed that the extra wall was most likely composed of polysaccharides. Maturation of the egg was accompanied by the formation of a separation cavity above the egg and by some changes in the morphology of the nucleus and cytoplasmic organelles. The chromatin of the nucleus becomes condensed and the upper surface of the nucleus becomes closely associated with the plasmalemma. Amyloplasts in the egg cytoplasm were numerous and conspicuous, with most in close proximity to the nucleus. Finally, the cytoplasm on one side of the egg became vesiculated and the overlying plasmalemma was easily disrupted. These cytological features of the egg and the canal cells during oogenesis in O. japonica are markedly different from those of the leptosporangiate ferns and suggest a significant evolutionary divergence in reproductive cellular features between Osmundaceae and leptosporangiate ferns.  相似文献   

20.
中国现代石松类和蕨类的系统发育与分类系统   总被引:5,自引:0,他引:5  
石松类和蕨类植物是以孢子繁殖的维管植物,在陆地植物演化上占据重要地位。随着分子系统学研究的开展,各大类群间的系统发育关系得以阐明,传统上的概念得以修正,新的现代石松类和蕨类植物的分类系统也被提出,并不断得到完善。该文介绍国内外在蕨类植物系统发育方面的研究成果,重点讨论中国分布的类群的分类处理。文中提出了一个完整的中国现代石松类和蕨类植物的分类系统,包括5亚纲、14目、39科及12亚科、约140余属。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号