首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The biosynthesis of reduced glutathione (GSH) is carried out by the enzymes gamma-glutamylcysteine synthetase (GCL) and GSH synthetase. GCL is the rate-limiting step and represents a heterodimeric enzyme comprised of a catalytic subunit (GCLC) and a ("regulatory"), or modifier, subunit (GCLM). The nonhomologous Gclc and Gclm genes are located on mouse chromosomes 9 and 3, respectively. GCLC owns the catalytic activity, whereas GCLM enhances the enzyme activity by lowering the K(m) for glutamate and increasing the K(i) to GSH inhibition. Humans have been identified with one or two defective GCLC alleles and show low GSH levels. As an initial first step toward understanding the role of GSH in cellular redox homeostasis, we have targeted a disruption of the mouse Gclc gene. The Gclc(-/-) homozygous knockout animal dies before gestational day 13, whereas the Gclc(+/-) heterozygote is viable and fertile. The Gclc(+/-) mouse exhibits a gene-dose decrease in the GCLC protein and GCL activity, but only about a 20% diminution in GSH levels and a compensatory increase of approximately 30% in ascorbate-as compared with that in Gclc(+/+) wild-type littermates. These data show a reciprocal action between falling GSH concentrations and rising ascorbate levels. Therefore, the Gclc(+/-) mouse may be a useful genetic model for mild endogenous oxidative stress.  相似文献   

3.
4.
4-Hydroxynonenal (HNE) is one of the major end-products of lipid peroxidation and is increased in response to cellular stress and in many chronic and/or inflammatory diseases. HNE can in turn function as a potent signaling molecule to induce the expression of many genes including glutamate cysteine ligase (GCL), the rate-limiting enzyme in de novo glutathione (GSH) biosynthesis. GSH, the most abundant nonprotein thiol in the cell, plays a key role in antioxidant defense. HNE exposure causes an initial depletion of GSH due to formation of conjugates with GSH, followed by a marked increase in GSH resulting from the induction of GCL. GCL is a heterodimeric protein with a catalytic (or heavy, GCLC) subunit and a modulatory (or light, GCLM) subunit. HNE-mediated induction of both GCL subunits and mRNAs has been reported in rat and human cells in vitro; however, the mechanisms or the signaling pathways mediating the induction of Gclc and Gclm mRNAs by HNE differ between rat and human cells. Activation of the ERK pathway is involved in GCL regulation in rat cells while both the ERK and the JNK pathways appear to be involved in human cells. Downstream, MAPK activation leads to increased AP-1 binding, which mediates GCL induction. Some studies suggest a role for the EpRE element as well. As the concentrations of HNE used in all of the studies reviewed are comparable to what may be found in vivo, this makes the findings summarized in this review potentially relevant to GCL regulation in human health and disease.  相似文献   

5.
6.
7.
Hydrogen peroxide (H2O2) can cause single strand DNA breaks (ssDNA) in cells when the mechanisms normally in place to reduce it are overwhelmed. Such mechanisms include catalase, glutathione peroxidases (GPx), and peroxiredoxins. The relative importance of these enzymes in H2O2 reduction varies with cell and tissue type. The role of the GPx cofactor glutathione (GSH) in oxidative defense can be further understood by modulating its synthesis. The first and rate-limiting enzyme in GSH synthesis is glutamate-cysteine ligase (GCL), which has a catalytic subunit (Gclc) and a modifier subunit (Gclm). Using mouse hepatoma cells we evaluated the effects of GCL over expression on H2O2-induced changes in GSH and ssDNA break formation with the single cell gel electrophoresis assay (SCG or comet assay), and the acridine orange DNA unwinding flow cytometry assay (AO unwinding assay). Cells over expressing GCL had higher GSH content than control cells, and both SCG and AO unwinding assays revealed that cells over expressing GCL were significantly more resistant to H2O2-induced ssDNA break formation. Furthermore, using the AO unwinding assay, the prevalence of H2O2-induced breaks in different phases of the cell cycle was not different, and the degree of protection afforded by GCL over expression was also not cell cycle phase dependent. Our results support the hypothesis that GCL over expression enhanced GSH biosynthesis and protected cells from H2O2-induced DNA breaks. These results also suggest that genetic polymorphisms that affect GCL expression may be important determinants of oxidative DNA damage and cancer.  相似文献   

8.
9.
Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the GSH biosynthesis pathway. In higher eukaryotes, this enzyme is a heterodimer comprising a catalytic subunit (GCLC) and a modifier subunit (GCLM), which change the catalytic characteristics of the holoenzyme. To define the cellular function of GCLM, we disrupted the mouse Gclm gene to create a null allele. Gclm(-/-) mice are viable and fertile and have no overt phenotype. In liver, lung, pancreas, erythrocytes, and plasma, however, GSH levels in Gclm(-/-) mice were 9-16% of that in Gclm(+/+) littermates. Cysteine levels in Gclm(-/-) mice were 9, 35, and 40% of that in Gclm(+/+) mice in kidney, pancreas, and plasma, respectively, but remained unchanged in the liver and erythrocytes. Comparing the hepatic GCL holoenzyme with GCLC in the genetic absence of GCLM, we found the latter had an approximately 2-fold increase in K(m) for glutamate and a dramatically enhanced sensitivity to GSH inhibition. The major decrease in GSH, combined with diminished GCL activity, rendered Gclm(-/-) fetal fibroblasts strikingly more sensitive to chemical oxidants such as H(2)O(2). We conclude that the Gclm(-/-) mouse represents a model of chronic GSH depletion that will be very useful in evaluating the role of the GCLM subunit and GSH in numerous pathophysiological conditions as well as in environmental toxicity associated with oxidant insult.  相似文献   

10.
Glutamate cysteine ligase (GCL), which synthesizes gamma-glutamyl-cysteine (gamma-GC), is the rate-limiting enzyme in GSH biosynthesis. gamma-GC may be produced by the catalytic subunit GCLC or by the holoenzyme (GCLholo), which comprises GCLC and the modifier subunit GCLM. The Gclm(-/-) knock-out mouse shows tissue levels of GSH that are between 9 and 40% of the Gclm(+/+) wild-type mouse. In the present study, we used recombinant GCLC and GCLM and Gclm(-/-) mice to examine the role of GCLM on gamma-GC synthesis by GCLholo. GCLM decreased the Km for ATP by approximately 6-fold and, similar to other species, decreased the Km for glutamate and increased the Ki for feedback inhibition by GSH. Furthermore, GCLM increased by 4.4-fold the Kcat for gamma-GC synthesis; this difference in catalytic efficiency of GCLholo versus GCLC allowed us to derive a mathematical relationship for gamma-GC production and to determine the relative levels of GCLholo and GCLC; in homogenates of brain, liver, and lung, the ratio of GCLC to GCLholo was 7.0, 2.0, and 3.5, respectively. In kidney, however, the relationship between GCLC and GCLholo was complicated. Kidney contains GCLholo, free GCLC, and free GCLM, and free GCLC in kidney cannot interact with GCLM. Taken together, we conclude that, in most tissues, GCLM is limiting, suggesting that an increase in GCLM alone would increase gamma-GC synthesis. On the other hand, our results from kidney suggest that gamma-GC synthesis may be controlled post-translationally.  相似文献   

11.
Whereas ch/ch wild-type mice and ch/14CoS heterozygotes are viable, 14CoS/14CoS mice homozygous for a 3800 kb deletion on chromosome 7 die during the first day postpartum. Death is caused by disruption of the fumarylacetoacetate hydrolase (Fah) gene; absence of FAH, final enzyme in the tyrosine catabolism pathway, leads to accumulation of reactive electrophilic intermediates. In this study, we kept 14CoS/14CoS mice alive for 60 d with oral 2-(2-nitro-4-trifluoromethyl-benzyol)-1,3-cyclohexanedione (NTBC), an inhibitor of p-hydroxyphenylpyruvate dioxygenase, second enzyme in the tyrosine catabolic pathway. The 70% of NTBC-treated 14CoS/14CoS mice that survived 60 d showed poor growth and developed corneal opacities, compared with ch/14CoS littermates; NTBC-rescued Fah(-/-) knockout mice did not show growth retardation or ocular toxicity. NTBC-rescued 14CoS/14CoS mice also exhibited a striking oxidative stress response in liver and kidney, as measured by lower GSH levels and mRNA induction of four genes: glutamate cysteine ligase catalytic (Gclc) and modifier (Gclm) subunits, NAD(P)H:quinone oxidoreductase (Nqo1), and heme oxygenase-1 (Hmox1). Withdrawal of NTBC for 24-48 h from rescued adult 14CoS/14CoS mice resulted in severe apoptosis of the liver, detected histologically and by cytochrome c release from the mitochondria, increased caspase 3-like activity, and further decreases in GSH content. In kidney, proximal tubular epithelial cells were abnormal. Human hereditary tyrosinemia type I (HT1), caused by mutations in the FAH gene, is an autosomal recessive disorder in which the patient usually dies of liver fibrosis and cirrhosis during early childhood; NTBC treatment is known to prolong HT1 children's lives-although liver fibrosis, cirrhosis, hepatocarcinoma, and corneal opacities sometimes occur. The mouse data in the present study are consistent with the possibility that endogenous oxidative stress-induced apoptosis may be the underlying cause of liver pathology seen in NTBC-treated HT1 patients.  相似文献   

12.
13.
Regulation of glutathione synthesis   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
16.
17.
18.
The relationship between total glutathione (GSH) content and cell growth was examined in 3T3 fibroblasts. The intracellular GSH level of actively growing cultures gradually decreases as these cells become quiescent by either serum deprivation or high cell density. Upon mitogenic stimulation of sparse, quiescent (G0/G1) cultures with serum, there is a rapid 2.3-fold elevation in intracellular GSH levels which is maximal by 1 h and returns to baseline by 2 h. This is followed by a more gradual increase in GSH content as cells enter the S phase. In addition, the elevation in GSH content is required for maximum induction of DNA synthesis. Treatments that prevent the early increase in intracellular GSH levels do not affect protein synthesis but result in a reversible dose-dependent decrease in the percent of cells capable of entering S phase. These results indicate that GSH may be important in the regulation of cellular proliferation.  相似文献   

19.
Age-related nuclear cataracts are associated with progressive post-synthetic modifications of crystallins from various physical chemical and metabolic insults, of which oxidative stress is a major factor. The latter is normally suppressed by high concentrations of glutathione (GSH), which however are very low in the nucleus of the old lens. Here we generated a mouse model of oxidant stress by knocking out glutathione synthesis in the mouse in the hope of recapitulating some of the changes observed in human age-related nuclear cataract (ARNC). A floxed Gclc mouse was generated and crossed with a transgenic mouse expressing Cre in the lens to generate the LEGSKO mouse in which de novo GSH synthesis was completely abolished in the lens. Lens GSH levels were reduced up to 60% in homozygous LEGSKO mice, and a decreasing GSH gradient was noticed from cortical to nuclear region at 4 months of age. Oxidation of crystallin methionine and sulfhydryls into sulfoxides was dramatically increased, but methylglyoxal hydroimidazolones levels that are GSH/glyoxalase dependent were surprisingly normal. Homozygous LEGSKO mice developed nuclear opacities starting at 4 months that progressed into severe nuclear cataract by 9 months. We conclude that the LEGSKO mouse lens mimics several features of human ARNC and is thus expected to be a useful model for the development of anti-cataract agents.  相似文献   

20.
Glutathione (GSH) plays a central role in the redox balance maintenance in mammalian cells. Previous studies of industrial Chinese hamster ovary cell lines have demonstrated a relationship between GSH metabolism and clone productivity. However, a thorough investigation is required to understand this relationship and potentially highlight new targets for cell engineering. In this study, we have modulated the GSH intracellular content of an industrial cell line under bioprocess conditions to further elucidate the role of the GSH synthesis pathway. Two strategies were used: the variation of cystine supply and the direct inhibition of the GSH synthesis using buthionine sulfoximine (BSO). Over time of the bioprocess, a correlation between intracellular GSH and product titer has been observed. Analysis of metabolites uptake/secretion rates and proteome comparison between BSO-treated cells and nontreated cells has highlighted a slowdown of the tricarboxylic acid cycle leading to a secretion of lactate and alanine in the extracellular environment. Moreover, an adaptation of the GSH-related proteome has been observed with an upregulation of the regulatory subunit of glutamate–cysteine ligase and a downregulation of a specific GSH transferase subgroup, the Mu family. Surprisingly, the main impact of BSO treatment was observed on a global downregulation of the cholesterol synthesis pathways. As cholesterol is required for protein secretion, it could be the missing piece of the puzzle to finally elucidate the link between GSH synthesis and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号