首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pfam is a collection of multiple alignments and profile hidden Markov models of protein domain families. Release 3.1 is a major update of the Pfam database and contains 1313 families which are available on the World Wide Web in Europe at http://www.sanger.ac.uk/Software/Pfam/ and http://www.cgr.ki.se/Pfam/, and in the US at http://pfam.wustl.edu/. Over 54% of proteins in SWISS-PROT-35 and SP-TrEMBL-5 match a Pfam family. The primary changes of Pfam since release 2.1 are that we now use the more advanced version 2 of the HMMER software, which is more sensitive and provides expectation values for matches, and that it now includes proteins from both SP-TrEMBL and SWISS-PROT.  相似文献   

2.
The Pfam Protein Families Database   总被引:17,自引:0,他引:17       下载免费PDF全文
Pfam is a large collection of protein multiple sequence alignments and profile hidden Markov models. Pfam is available on the World Wide Web in the UK at http://www.sanger.ac.uk/Software/Pfam/, in Sweden at http://www.cgb.ki.se/Pfam/, in France at http://pfam.jouy.inra.fr/ and in the US at http://pfam.wustl.edu/. The latest version (6.6) of Pfam contains 3071 families, which match 69% of proteins in SWISS-PROT 39 and TrEMBL 14. Structural data, where available, have been utilised to ensure that Pfam families correspond with structural domains, and to improve domain-based annotation. Predictions of non-domain regions are now also included. In addition to secondary structure, Pfam multiple sequence alignments now contain active site residue mark-up. New search tools, including taxonomy search and domain query, greatly add to the functionality and usability of the Pfam resource.  相似文献   

3.
Pfam contains multiple alignments and hidden Markov model based profiles (HMM-profiles) of complete protein domains. The definition of domain boundaries, family members and alignment is done semi-automatically based on expert knowledge, sequence similarity, other protein family databases and the ability of HMM-profiles to correctly identify and align the members. Release 2.0 of Pfam contains 527 manually verified families which are available for browsing and on-line searching via the World Wide Web in the UK at http://www.sanger.ac.uk/Pfam/ and in the US at http://genome.wustl. edu/Pfam/ Pfam 2.0 matches one or more domains in 50% of Swissprot-34 sequences, and 25% of a large sample of predicted proteins from the Caenorhabditis elegans genome.  相似文献   

4.
SUMMARY: There are many resources that contain information about binary interactions between proteins. However, protein interactions are defined by only a subset of residues in any protein. We have implemented a web resource that allows the investigation of protein interactions in the Protein Data Bank structures at the level of Pfam domains and amino acid residues. This detailed knowledge relies on the fact that there are a large number of multidomain proteins and protein complexes being deposited in the structure databases. The resource called iPfam is hosted within the Pfam UK website. Most resources focus on the interactions between proteins; iPfam includes these as well as interactions between domains in a single protein. AVAILABILITY: iPfam is available on the Web for browsing at http://www.sanger.ac.uk/Software/Pfam/iPfam/; the source-data for iPfam is freely available in relational tables via the ftp site ftp://ftp.sanger.ac.uk/pub/databases/Pfam/database_files/.  相似文献   

5.
The CluSTr (Clusters of SWISS-PROT and TrEMBL proteins) database offers an automatic classification of SWISS-PROT and TrEMBL proteins into groups of related proteins. The clustering is based on analysis of all pairwise comparisons between protein sequences. Analysis has been carried out for different levels of protein similarity, yielding a hierarchical organisation of clusters. The database provides links to InterPro, which integrates information on protein families, domains and functional sites from PROSITE, PRINTS, Pfam and ProDom. Links to the InterPro graphical interface allow users to see at a glance whether proteins from the cluster share particular functional sites. CluSTr also provides cross-references to HSSP and PDB. The database is available for querying and browsing at http://www.ebi.ac.uk/clustr.  相似文献   

6.
MOTIVATION: Profile searches of sequence databases are a sensitive way to detect sequence relationships. Sophisticated profile-profile comparison algorithms that have been recently introduced increase search sensitivity even further. RESULTS: In this article, a simpler approach than profile-profile comparison is presented that has a comparable performance to state-of-the-art tools such as COMPASS, HHsearch and PRC. This approach is called SCOOP (Simple Comparison Of Outputs Program), and is shown to find known relationships between families in the Pfam database as well as detect novel distant relationships between families. Several novel discoveries are presented including the discovery that a domain of unknown function (DUF283) found in Dicer proteins is related to double-stranded RNA-binding domains. AVAILABILITY: SCOOP is freely available under a GNU GPL license from http://www.sanger.ac.uk/Users/agb/SCOOP/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

7.
MOTIVATION: Multi-domain proteins have evolved by insertions or deletions of distinct protein domains. Tracing the history of a certain domain combination can be important for functional annotation of multi-domain proteins, and for understanding the function of individual domains. In order to analyze the evolutionary history of the domains in modular proteins it is desirable to inspect a phylogenetic tree based on sequence divergence with the modular architecture of the sequences superimposed on the tree. RESULT: A Java applet, NIFAS, that integrates graphical domain schematics for each sequence in an evolutionary tree was developed. NIFAS retrieves domain information from the Pfam database and uses CLUSTAL W to calculate a tree for a given Pfam domain. The tree can be displayed with symbolic bootstrap values, and to allow the user to focus on a part of the tree, the layout can be altered by swapping nodes, changing the outgroup, and showing/collapsing subtrees. NIFAS is integrated with the Pfam database and is accessible over the internet (http://www.cgr.ki.se/Pfam). As an example, we use NIFAS to analyze the evolution of domains in Protein Kinases C.  相似文献   

8.
InterPro, an integrated documentation resource for protein families, protein domains, and functional sites, was developed to amalgamate the individual efforts of the PROSITE, PRINTS, Pfam, and ProDom databases. InterPro can be used for the computational functional classification of newly determined amino acid sequences that lack biochemical characterization and for comparative genome analysis. InterPro contains over 3500 entries for more than 1 000 000 hits in SWISS-PROT and TrEMBL. The database is accessible for text-and sequence-based searches at http://www.ebi.ac.uk/interpro/. InterPro was used for the complete analysis of the proteome of the pathogenic microorganism Mycobacterium tuberculosis and the comparison with the predicted protein-coding sequences of the complete genomes of Bacillus subtilis and Escherichia coli. It was found that 64.8% of proteins in the proteome of M. tuberculosis matched InterPro entries and can be classified by their functions. The comparison with B. subtilis and E. coli provided information on the most common protein families and domains and on the most highly represented protein families in each organism. Thus, InterPro is a useful tool for general comparison of complete proteomes and their compositions.  相似文献   

9.
10.
Members of a superfamily of proteins could result from divergent evolution of homologues with insignificant similarity in the amino acid sequences. A superfamily relationship is detected commonly after the three-dimensional structures of the proteins are determined using X-ray analysis or NMR. The SUPFAM database described here relates two homologous protein families in a multiple sequence alignment database of either known or unknown structure. The present release (1.1), which is the first version of the SUPFAM database, has been derived by analysing Pfam, which is one of the commonly used databases of multiple sequence alignments of homologous proteins. The first step in establishing SUPFAM is to relate Pfam families with the families in PALI, which is an alignment database of homologous proteins of known structure that is derived largely from SCOP. The second step involves relating Pfam families which could not be associated reliably with a protein superfamily of known structure. The profile matching procedure, IMPALA, has been used in these steps. The first step resulted in identification of 1280 Pfam families (out of 2697, i.e. 47%) which are related, either by close homologous connection to a SCOP family or by distant relationship to a SCOP family, potentially forming new superfamily connections. Using the profiles of 1417 Pfam families with apparently no structural information, an all-against-all comparison involving a sequence-profile match using IMPALA resulted in clustering of 67 homologous protein families of Pfam into 28 potential new superfamilies. Expansion of groups of related proteins of yet unknown structural information, as proposed in SUPFAM, should help in identifying ‘priority proteins’ for structure determination in structural genomics initiatives to expand the coverage of structural information in the protein sequence space. For example, we could assign 858 distinct Pfam domains in 2203 of the gene products in the genome of Mycobacterium tubercolosis. Fifty-one of these Pfam families of unknown structure could be clustered into 17 potentially new superfamilies forming good targets for structural genomics. SUPFAM database can be accessed at http://pauling.mbu.iisc.ernet.in/~supfam.  相似文献   

11.
InterPro was developed as a new integrated documentation resource for protein families, domains and functional sites to rationalize the complementary efforts of the PROSITE, PRINTS, Pfam and ProDom database projects and has applications in computational functional classification of newly determined sequences lacking biochemical characterization and in comparative genome analysis. InterPro contains over 3500 entries, with more than 1000000 hits in SWISS-PROT and TrEMBL. The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. InterPro was used for whole proteome analysis of the pathogenic microorganism, Mycobacterium tuberculosis, and comparison with the predicted protein coding sequences of the complete genomes of Bacillus subtilis and Escherichia coli. 64.8% of the M. tuberculosis proteins in the proteome matched InterPro entries, and these could be classified according to function. The comparison with B. subtilis and E. coli provided information on the most common protein families and domains, and the most highly represented families in each organism. InterPro thus provides a useful tool for global views of whole proteomes and their compositions.  相似文献   

12.
The SYSTERS (short for SYSTEmatic Re-Searching) protein sequence cluster set consists of the classification of all sequences from SWISS-PROT and PIR into disjoint protein family clusters and hierarchically into superfamily and subfamily clusters. The cluster set can be searched with a sequence using the SSMAL search tool or a traditional database search tool like BLAST or FASTA. Additionally a multiple alignment is generated for each cluster and annotated with domain information from the Pfam database of protein domain families. A taxonomic overview of the organisms covered by a cluster is given based on the NCBI taxonomy. The cluster set is available for querying and browsing at http://www.dkfz-heidelberg. de/tbi/services/cluster/systersform  相似文献   

13.
Cai CZ  Han LY  Ji ZL  Chen X  Chen YZ 《Nucleic acids research》2003,31(13):3692-3697
Prediction of protein function is of significance in studying biological processes. One approach for function prediction is to classify a protein into functional family. Support vector machine (SVM) is a useful method for such classification, which may involve proteins with diverse sequence distribution. We have developed a web-based software, SVMProt, for SVM classification of a protein into functional family from its primary sequence. SVMProt classification system is trained from representative proteins of a number of functional families and seed proteins of Pfam curated protein families. It currently covers 54 functional families and additional families will be added in the near future. The computed accuracy for protein family classification is found to be in the range of 69.1-99.6%. SVMProt shows a certain degree of capability for the classification of distantly related proteins and homologous proteins of different function and thus may be used as a protein function prediction tool that complements sequence alignment methods. SVMProt can be accessed at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.  相似文献   

14.
InterPro (http://www.ebi.ac.uk/interpro/) is an integrated documentation resource for protein families, domains and sites, developed initially as a means of rationalizing the complementary efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. It is a useful resource that aids the functional classification of proteins. Almost 90% of the actinopterygii protein sequences from SWISS-PROT and TrEMBL can be classified using InterPro. Over 30% of the actinopterygii protein sequences currently in SWISS-PROT and TrEMBL are of mitochondrial origin, the majority of which belong to the cytochrome b/b6 family. InterPro also gives insights into the domain composition of the classified proteins and has applications in the functional classification of newly determined sequences lacking biochemical characterization, and in comparative genome analysis. A comparison of the actinopterygii protein sequences against the sequences of other eukaryotes confirms the high representation of eukaryotic protein kinase in the organisms studied. The comparisons also show that, based on InterPro families, the trans-species evolution of MHC class I and II molecules in mammals and teleost fish can be recognized.  相似文献   

15.
InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).  相似文献   

16.
MOTIVATION: The best quality multiple sequence alignments are generally considered to derive from structural superposition. However, no previous work has studied the relative performance of profile hidden Markov models (HMMs) derived from such alignments. Therefore several alignment methods have been used to generate multiple sequence alignments from 348 structurally aligned families in the HOMSTRAD database. The performance of profile HMMs derived from the structural and sequence-based alignments has been assessed for homologue detection. RESULTS: The best alignment methods studied here correctly align nearly 80% of residues with respect to structure alignments. Alignment quality and model sensitivity are found to be dependent on average number, length, and identity of sequences in the alignment. The striking conclusion is that, although structural data may improve the quality of multiple sequence alignments, this does not add to the ability of the derived profile HMMs to find sequence homologues. SUPPLEMENTARY INFORMATION: A list of HOMSTRAD families used in this study and the corresponding Pfam families is available at http://www.sanger.ac.uk/Users/sgj/alignments/map.html Contact: sgj@sanger.ac.uk  相似文献   

17.
Bioactive peptides play critical roles in regulating most biological processes in animals, and have considerable biological, medical and industrial importance. A number of peptides have been discovered usually based on their biological activities in vitro or based on their sequence similarities in silico. Through searches in Swiss-Prot and Trembl protein databases using BLAST alignment tools and other in silico methods, all currently known bioactive peptides and their precursor proteins are extracted. In addition, 132 recently discovered putative peptide genes in Drosophila as well as their orthologs in other species are collected. In total, 20 027 bioactive peptides from 19 438 precursor proteins covering 2820 metazoan species are retained, and they, respectively, make up a peptide and a peptide precursor database. The peptides and peptide precursor proteins are further classified into 373 families, 178 of which are represented by Prosite Pfam or Smart motifs, or by typical peptide motifs that have been constructed recently. The remaining 195 families are novel peptide families. The motifs characterizing the 178 peptide families are saved into a peptide motif database. The peptide, peptide precursor and peptide motif databases (version 1.0) are the most complete peptide, precursor and peptide motif collection in Metazoa so far. They are available on the WWW at http://www.peptides.be/.  相似文献   

18.
19.
HUGE is a database for human large proteins newly identified in the Kazusa cDNA project, the aim of which is to predict the primary structure of proteins from the sequences of human large cDNAs (>4 kb). In particular, cDNA clones capable of coding for large proteins (>50 kDa) are the current targets of the project. HUGE contains >1100 cDNA sequences and detailed information obtained through analysis of the sequences of cDNAs and the predicted proteins. Besides an increase in the number of cDNA entries, the amount of experimental data for expression profiling has been largely increased and data on chromosomal locations have been newly added. All of the protein-coding regions were examined by GeneMark analysis, and the results of a motif/domain search of each predicted protein sequence against the Pfam database have been newly added. HUGE is available through the WWW at http://www.kazusa.or.jp/huge  相似文献   

20.
SUMMARY: We present a Web server where the SYSTERS cluster set of the non-redundant protein database consisting of sequences from SWISS-PROT and PIR is being made available for querying and browsing. The cluster set can be searched with a new sequence using the SSMAL search tool. Additionally, a multiple alignment is generated for each cluster and annotated with domain information from the Pfam protein family database. AVAILABILITY: The server address is http://www.dkfz-heidelberg.de/tbi/services/cluster/ systersform  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号