首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal regulation during water immersion   总被引:2,自引:0,他引:2  
  相似文献   

2.
Studies were performed in the rat to determine the effect of lithium on electrolyte transport in distal portions of the nephron since steep corticomedullary gradient for lithium has been demonstrated and ionic competition and/or substitution of lithium for sodium and potassium may play a role in inhibition of vasopressin-induced water transport. During the intravenous infusion of LiC1, in the absence of volume expansion and at plasma levels of 2-5 mequiv/liter of Li, maximum urine con-entration was inhibitied. Under the same conditions lithium administration impaired potassium secretion and urinary acidification and resulted in a natriuresis. These results indicate that lithium affects electrolyte transport in the same nephron segments in which the action of vasopressin is inhibitied. In addition, evidence is provided that suggests that during the chronic administration of LiC1, the sustained increase in oral intake of water and urinary flow rate results from an increase in thirst as well as reduced renal concentrating ability.  相似文献   

3.
4.
Changes in transcutaneous PO2(tcPO2) during water immersions with O2 and N2 bubbling are presented. Three healthy male volunteers underwent water immersions for 30 min. Water temperature was controlled to 36.5 degrees C to minimize any thermal stress. Minute ventilation (Ve), oxygen consumption (VO2), heart rate (HR), respiratory rate (RR), and body temperature (Tb) were continuously monitored throughout exposure. In addition, tcPO2 electrode was mounted on the volar side of the right forearm in the middle part of immersion and tcPO2 and tcPCO2 were then monitored in the water. Blood flow of the right forearm was also measured following tcPO2/tcPCO2 measurements The tcPO2 values during water immersions with O2 bubbling were higher than those with N2 bubbling for given blood flow. Although end-tidal PO2 remained unchanged for any occasion, Ve, VO2, HR, RR during water immersions with O2 bubbling were significantly decreased compared to those with N2 bubbling. Results suggest that cutaneous respiration facilitated by hydration may contribute higher tcPO2 values during water immersions with O2 bubbling and may be somewhat related to systemic changes.  相似文献   

5.
To study the hydraulic effects of subtotal immersion as a rehabilitative hydrotherapy, we examined the change in serum levels of atrial natriuretic peptide, catecholamine, cortisol and interleukins in 12 healthy volunteers. The subjects soaked in 42 degrees C water of 70 cm depth up to chin level in the upright seated position for 10 min. The serum level of atrial natriuretic peptide increased significantly 15 min after the start of subtotal immersion, though that of brain natriuretic peptide did not change. The serum dopamine level increased significantly 15 min after immersion, though neither the serum epinephrine nor norepinephrine levels did. In addition, 30 min after the start of immersion, the serum levels of atrial natriuretic peptide and dopamine decreased to those before immersion. The serum level of adrenocorticotropic hormone increased 15 min after immersion, though those of cortisol, interleukin-1beta and 6, and tumor necrotic factor-alpha did not change. It is suggested that 10-min head-out water immersion increased atrial natriuretic peptide partly due to increased venous return or right atrial load by hydraulic pressure.  相似文献   

6.
Human lung mechanics during water immersion   总被引:2,自引:0,他引:2  
  相似文献   

7.
We hypothesized that the more-pronounced hypotensive and bradycardic effects of an antiorthostatic posture change from seated to supine than water immersion are caused by hydrostatic carotid baroreceptor stimulation. Ten seated healthy males underwent five interventions of 15-min each of 1) posture change to supine, 2) seated water immersion to the Xiphoid process (WI), 3) seated neck suction (NS), 4) WI with simultaneous neck suction (-22 mmHg) adjusted to simulate the carotid hydrostatic pressure increase during supine (WI + NS), and 5) seated control. Left atrial diameter increased similarly during supine, WI + NS, and WI and was unchanged during control and NS. Mean arterial pressure (MAP) decreased the most during supine (7 +/- 1 mmHg, P < 0.05) and less during WI + NS (4 +/- 1 mmHg) and NS (3 +/- 1 mmHg). The decrease in heart rate (HR) by 13 +/- 1 beats/min (P < 0.05) and the increase in arterial pulse pressure (PP) by 17 +/- 4 mmHg (P < 0.05) during supine was more pronounced (P < 0.05) than during WI + NS (10 +/- 2 beats/min and 7 +/- 2 mmHg, respectively) and WI (8 +/- 2 beats/min and 6 +/- 1 mmHg, respectively, P < 0.05). Plasma vasopressin decreased only during supine and WI, and plasma norepinephrine, in addition, decreased during WI + NS (P < 0.05). In conclusion, WI + NS is not sufficient to decrease MAP and HR to a similar extent as a 15-min seated to supine posture change. We suggest that not only static carotid baroreceptor stimulation but also the increase in PP combined with low-pressure receptor stimulation is a possible mechanism for the more-pronounced decrease in MAP and HR during the posture change.  相似文献   

8.
9.
The effect of hypoglycemic stress on the changes in water and electrolyte metabolism induced by head-down tilting (HDT) was studied. Six healthy men were subjected to postural changes (30 min standing, 2 h HDT, 1 h standing), with or without the intravenous administration of insulin at the beginning of HDT. When insulin was not given, antidiuretic hormone (ADH), cortisol, plasma renin activity (PRA), aldosterone, and catecholamine levels were decreased and atrial natriuretic polypeptide (ANP) levels increased during HDT. These changes were associated with 2.5- and 1.5-fold increases in urine flow and sodium excretion, respectively, when compared with the amounts before HDT. On the other hand, insulin-induced hypoglycemia during HDT produced increases in ADH, cortisol, PRA, aldosterone, and catecholamine levels. At the same time, an exaggerated ANP response by HDT was observed. These hormonal changes were associated with an abolishment of the increases in urine flow and sodium excretion. It is suggested that acute stress modifies the changes in fluid and electrolyte metabolism induced by HDT.  相似文献   

10.
11.
Cardiovascular regulation during head-out water immersion exercise   总被引:1,自引:0,他引:1  
Head-out water immersion is known to increase cardiac filling pressure and volume in humans at rest. The purpose of the present study was to assess whether these alterations persist during dynamic exercise. Ten men performed upright cycling exercise on land and in water to the suprasternal notch at work loads corresponding to 40, 60, 80, and 100% maximal O2 consumption (VO2max). A Swan-Ganz catheter was used to measure right atrial pressure (PAP), pulmonary arterial pressure (PAP), and cardiac index (CI). Left ventricular end-diastolic (LVED) and end-systolic (LVES) volume indexes were assessed with echocardiography. VO2max did not differ between land and water. RAP, PAP, CI, stroke index, and LVED and LVES volume indexes were significantly greater (P less than 0.05) during exercise in water than on land. Stroke index did not change significantly from rest to exercise in water but increased (P less than 0.05) on land. Arterial systolic blood pressure did not differ between land and water at rest or during exercise. Heart rates were significantly lower (P less than 0.05) in water only during the two highest work intensities. The results indicate that indexes of cardiac preload are greater during exercise in water than on land.  相似文献   

12.
The effects of immersion and exercise on prolactin during pregnancy   总被引:2,自引:0,他引:2  
Prolactin is an important hormone during pregnancy, affecting mother, fetus, and amniotic fluid volume. Immersion is known to affect prolactin levels significantly. To determine the effect of immersion and exercise on the prolactin response during pregnancy, we examined serum prolactin levels at 15, 25, and 35 weeks' gestation and 10 weeks post partum. Twelve women completed 20 min land rest, 20 min immersion in 30 degrees C water to the xiphoid, and 20 min exercise in the water at 60% VO2max. Resting prolactin levels were 1.91 +/- 0.32, 4.55 +/- 0.5, and 5.85 +/- 0.27 nmol.l-1 +/- standard error of the mean at 15, 25, and 35 weeks' gestation, respectively. Postpartum lactating women had a resting mean prolactin level of 3.95 +/- 1.6 versus 0.22 +/- 0.4 nmol.l-1 in non-lactating women. Prolactin levels declined significantly during immersion even after correction for dilution by plasma volume shifts. The immersion response was inversely related to the duration of pregnancy with 29%, 22%, and 12% drops during 15-, 25- and 35-week trials, respectively. Compared to rest, exercise prolactin levels remained depressed during the 15th and 25th week trials. We hypothesize that immersion in water caused prolactin levels to decline.  相似文献   

13.
14.
15.
The present work was undertaken to determine the effect of atmospheric pressure [ranging from a high altitude of 4,300 m above sea level or 0.6 atmospheres absolute (ATA) to depths of 10 m deep or 2 ATA] on the critical water temperature (Tcw), defined as the lowest water temperature a subject can tolerate at rest for 2 h without shivering, of the unprotected subject during water immersion. Nine healthy males wearing only shorts were subjected to immersion to the neck in water at 0.6, 1, and 2 ATA while resting for 2 h. Continuous measurements included esophageal (Tes) and skin (Tsk) temperatures, direct heat loss from the skin (Htissue), and insulation of the tissue (Itissue). The Tcw was significantly higher at 0.6 ATA than 1 and 2 ATA: however, Tcw at 1 ATA was identical to that at 2 ATA. The metabolic heat production remained unchanged among the pressures. During the 2-h immersion in Tcw, Tes was identical among all atmospheric pressures: however, Tsk was significantly higher (P less than 0.05) at 0.6 ATA and was identical between 1 and 2 ATA. The overall mean Itissue was near maximal during immersion in Tcw in each pressure, and no difference was detected among the pressures. However, Itissue at the acral extremities (arm, hand, and foot) decreased significantly at 0.6 ATA, and subsequently heat loss from these parts was increased, which elevated an extremity-to-trunk heat loss ratio to 1.4 at 0.6 ATA from 1.1 at 1 and 2 ATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Water immersion produces a marked diuresis, natriuresis, and kaliuresis in association with suppression of the renin-aldosterone system. These effects are mediated primarily by an increase in central blood volume. Consequently, this redistribution and the resultant marked increase in cardiac output is associated with alterations in the circulating levels of several volume regulatory hormones, including plasma renin activity and plasma aldosterone. Although the changes in these blood hormonal levels probably reflect perturbation of hormonal release, it is conceivable that the above-mentioned central hemodynamic modifications result in an altered splanchnic blood flow, thereby modulating hormonal clearances. We assessed the effects of immersion on hepatic blood flow by determining the pharmacokinetics of single doses of lidocaine administered intravenously. Seven normal male subjects were studied during a time-control period and during water immersion to the neck. The clearance of lidocaine was unaltered by immersion, suggesting that the presumed marked central hypervolemia and increased cardiac output was not associated with changes in splanchnic blood flow.  相似文献   

17.
Plasma catecholamine levels during water immersion in man   总被引:1,自引:0,他引:1  
In ten normal subjects thermoneutral neck-out water immersion produced a highly significant natriuresis and diuresis mediated via an induced central hypervolaemia. During immersion suppression of plasma noradrenaline and adrenaline was observed but no change occurred in plasma dopamine levels. No correlation was found between the suppression of noradrenaline and the diuresis and natriuresis. The reduction in plasma noradrenaline observed may reflect a widespread diminution of sympatho-adrenal activity during water immersion. This reduction could be a consequence of the cardiovascular changes of immersion and may not be directly involved in the mechanism of the renal response.  相似文献   

18.
19.
20.
High precision blood and plasma densitometry was used to measure transvascular fluid shifts during water immersion to the neck. Six men (28-49 years) undertook 30 min of standing immersion in water at 35.0 +/- 0.2 degrees C; immersion was preceded by 30 min control standing in air at 28 +/- 1 degrees C. Blood was sampled from an antecubital catheter for determination of blood density (BD), plasma density (PD), haematocrit (Ht), total plasma protein concentration (PPC), and plasma albumin concentration (PAC). Compared to control, significant decreases (p less than 0.01) in all these measures were observed after 20 min immersion. At 30 min, plasma volume had increased by 11.0 +/- 2.8%; the average density of the fluid shifted from extravascular fluid into the vascular compartment was 1006.3 g.l-1; albumin moved with the fluid and its albumin concentration was about one-third of the plasma protein concentration during early immersion. These calculations are based on the assumption that the F-cell ratio remained unchanged. No changes in erythrocyte water content during immersion were found. Thus, immersion-induced haemodilution is probably accompanied by protein (mainly albumin) augmentation which accompanies the intravascular fluid shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号