首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two modes of chloroplast membrane post-illumination phosphorylation were detected, using the luciferin-luciferase ATP assay, one of which was not influenced by added permeable buffer (pyridine). That finding provides a powerful new tool for studying proton-membrane interactions during energy coupling. When ADP and Pi were added to the thylakoid suspension after a train of flashes [similar to the traditional post-illumination phosphorylation protocol (termed PIP here)], the post-illumination ATP yield was influenced by pyridine as expected, in a manner consistent with the ATP formation, in part, being driven by protons present in the bulk inner aqueous phase, i.e., through a delocalized protonmotive force. However, when ADP and Pi were present during the flash train (referred to as PIP+), and ATP formation occurred during the flash train, the post-illumination ATP yield was unaffected by the presence of pyridine, consistent with the hypothesis that localized proton gradients were driving ATP formation. To test this hypothesis further, the pH and flash number dependence of the PIP and PIP+ ATP yields were measured, the results being consistent with the above hypothesis of dual compartment origins of protons driving post-illumination ATP formation.Measuring proton accumulation during the attainment of the threshold energization level when no component was allowed to form (+ valinomycin, K+), and testing for pyridine effects on the proton uptake, reveals that the onset of ATP formation requires the accumulation of about 60 nmol H+ (mg Chl)–1. Between that level and about 110–150 nmol H+ (mg Chl)–1, the accumulation appears to be absorbed by localized-domain membrane buffering groups, the protons of which do not equilibrate readily with the inner aqueous (lumen) phase. Post-illumination phosphorylation driven by the dissipation of the domain protons was not affected by pyridine (present in the lumen), even though the effective pH in the domains must have been well into the buffering range of the pyridine. That finding provides additional insight into the localized domains, namely that protons can be absorbed by endogenous low pK buffering groups, and released at a low enough pH (5.7 when the external pH was 8, 4.7 at pH 7 external) to drive significant ATP formation when no further proton production occurs due to the redox turnovers. We propose that proton accumulation beyond the 110–150 nmol (mg Chl)–1 level spills over into the lumen, interacting with additional, lumenal endogenous buffering groups and with pyridine, and subsequent efflux of those lumenal protons can also drive ATP formation. Such a dual-compartment thylakoid model for the accumulation of protons competent to drive ATP formation would require a gating mechanism to switch the proton flux from the localized pathway into the lumen, as discussed by R. A. Dilley, S. M. Theg, and W. A. Beard (1987)Annu. Rev. Plant Physiol. 38, 348–389, and recently suggested by R. D. Horner and E. N. Moudrianakis (1986)J. Biol. Chem. 261, 13408–13414. The model can explain conflicting data from past work showing either localized or delocalized gradient coupling patterns.  相似文献   

2.
When 100 mM KCl replaced sucrose in a chloroplast thylakoid stock suspension buffer, the membranes were converted from a localized proton gradient to a delocalized proton gradient energy coupling mode. The KCl-suspended but not the sucrose-suspended thylakoids showed pyridine-dependent extensions of the ATP onset lag and pyridine effects on post-illumination phosphorylation. The ATP formation assays were performed in a medium of identical composition, using about a 200-fold dilution of the stock thylakoid suspension; hence the different responses were due to the pretreatment, and not the conditions present in the phosphorylation assay. Such permeable buffer effects on ATP formation provide a clear indicator of delocalized proton gradients as the driving force for phosphorylation. The pyridine-dependent increases in the onset lags (and effects on post-illumination phosphorylation) were not due to different ionic conductivities of the membranes (measured by the 515 nm electrochromic absorption change), H+/e ratios, or electron transport capacities for the two thylakoid preparations. Thylakoid volumes and [ 14C]pyridine equilibration were similar with both preparations. The KCl-induced shift toward a bulk-phase delocalized energy coupling mode was reversed when the thylakoids were placed back in a low-salt medium.Proton uptake, at the ATP-formation energization threshold flash number, was much larger in the KCl-treated thylakoids and they also had a longer ATP formation onset lag, when no pyridine was present. These results are consistent with the salt treatment exposing additional endogenous buffering groups for interaction with the proton gradient. The concomitant appearance of the pyridine buffer effects implies that the additional endogenous buffering groups must be located on proteins directly exposed in the aqueous lumen phase.Kinetic analysis of the decay of the post-illumination phosphorylation in the two thylakoid preparations showed different apparent first-order rate constants, consistent with there being two different compartments contributing to the proton reservoirs that energize ATP formation. We suggest that the two compartments are a membrane-phase localized compartment operative in the sucrose-treated thylakoids and the bulk lumen phase into which protons readily equilibrate in the KCl-treated thylakoids.  相似文献   

3.
It was shown before (Wooten, D. C., and Dilley, R. A. (1993) J. Bioenerg. Biomembr. 25, 557–567; Zakharov, S. D., Li, X., Red'ko, T. P., and Dilley, R. A. (1996) J. Bioenerg. Biomembr. 28, 483–493) that pH dependent reversible Ca2+ binding near the N- and C-terminal end of the 8 kDa subunit c modulates ATP synthesis driven by an applied pH jump in chloroplast and E. coli ATP synthase due to closing a proton gate proposed to exist in the F0 H+ channel of the F0F1 ATP synthase. This mechanism has further been investigated with the use of membrane vesicles from mutants of the cyanobacterium Synechocystis 6803. Vesicles from a mutant with serine at position 37 in the hydrophilic loop of the c-subunit replaced by the charged glutamic acid (strain plc 37) has a higher H+/ATP ratio than the wild type and therefore shows ATP synthesis at low values of H +. The presence of 1 mM CaCl2 during the preparation and storage of these vesicles blocked acid–base jump ATP formation when the pH of the acid side (inside) was between pH 5.6 and 7.1, even though the pH of the acid–base jump was thermodynamically in excess of the necessary energy to drive ATP formation at an external pH above 8.28. That is, in the absence of added CaCl2, ATP formation did occur under those conditions. However, when the base stage pH was 7.16 and the acid stage below pH 5.2, ATP was formed when Ca2+ was present. This is consistent with Ca2+ being displaced by H+ ions from the F0 on the inside of the thylakoid membrane at pH values below about 5.5. Vesicles from a mutant with the serine of position 3 replaced by a cysteine apparently already contain some bound Ca2+ to F0. Addition of 1 mM EGTA during preparation and storage of those vesicles shifted the otherwise already low internal pH needed for onset of ATP synthesis to higher values when the external pH was above 8. With both strains it was shown that the Ca2+ binding effect on acid–base induced ATP synthesis occurs above an internal pH of about 5.5. These results were corroborated by 45Ca2+- ligand blot assays on organic solvent soluble preparations containing the 8 kDa F0 subunit c from the S-3-C mutant ATP synthase, which showed 45Ca2+ binding as occurs with the pea chloroplast subunit III. The phosphorylation efficiency (P/2e), at strong light intensity, of Ca2+ and EGTA treated vesicles from both strains were almost equal showing that Ca2+ or EGTA have no other effect on the ATP synthase such as a change in the proton to ATP ratio. The results indicate that the Ca2+ binding to the F0 H+ channel can block H+ flux through the channel at pH values above about 5.5, but below that pH protons apparently displace the bound Ca2+, opening the CF0 H+ channel between the thylakoid lumen and H+ conductive channel.  相似文献   

4.
5.
The proton translocation stoichiometry (H+/ATP ratio) was investigated in membrane vesicles from a Synechocystis 6803 mutant in which the serine at position 37 in the hydrophilic loop of the c-subunit from the wild type was replaced by a negatively charged glutamic acid residue (strain plc37). At this position the c-subunit of chloroplasts and the cyanobacterium Synechococcus 6716 already contains glutamic acid. H+/ATP ratios were determined with active ATP synthase in thermodynamic equilibrium between phosphate potential (G p ) and the proton gradient ( H +) induced by acid–base transition. The mutant displayed a significantly higher H+/ATP ratio than the control strain (wild type with kanamycin resistance) at pH 8 (4.3 vs. 3.3); the higher ratio also being observed in chloroplasts and Synechococcus 6716. Furthermore, the pH dependence of the H+/ATP of strain plc37 resembles that of Synechococcus 6716. When the pH was increased from 7.6 to 8.4, the H+/ATP of the mutant increased from 4.2 to 4.6 whereas in the control strain the ratio decreased from 3.8 to 2.8. Differences in H+/ATP between the mutant and the control strain were confirmed by measuring the light-induced phosphorylation efficiency (P/2e), which changed as expected, i.e., the P/2e ratio in the mutant was significantly less than that in the wild type. The need for more H+ ions used per ATP in the mutant was also reflected by the significantly lower growth rate of the mutant strain. The results are discussed against the background of the present structural and functional models of proton translocation coupled to catalytic activity of the ATP synthase.  相似文献   

6.
1. ATP synthesis (monitored by luciferin-luciferase) can be elicited by a single turnover flash of saturating intensity in chromatophores from Rhodopseudomonas capsulata, Kb1. The ATP yield from the first to the fourth turnover is strongly influenced by the phosphate potential: at high phosphate potential (?11.5 kcal/mol) no ATP is formed in the first three turnovers while at lower phosphate potential (?8.2 kcal/mol) the yield in the first flash is already one half of the maximum, which is reached after 2–3 turnovers.2. The response to ionophores indicates that the driving force for ATP synthesis in the first 20 turnovers is mainly given by a membrane potential. The amplitude of the carotenoid band shift shows that during a train of flashes an increasing ΔΨ is built up, which reaches a stationary level after a few turnovers; at high phosphate potential, therefore, more turnovers of the same photosynthetic unit are required to overcome an energetic threshold.3. After several (six to seven) flashes the ATP yield becomes constant, independently from the phosphate potential; the yield varies, however, as a function of dark time (td) between flashes, with an optimum for td = 160–320 ms.4. The decay kinetics of the high energy state generated by a long (125 ms) flash have been studied directly measuring the ATP yield produced in post-illumination by one single turnover flash, under conditions of phosphate potential (?10 kcal/mol), which will not allow ATP formation by one single turnover. The high energy state decays within 20 s after the illumination. The decay rate is strongly accelerated by 10?8 M valinomycin.5. Under all the experimental conditions described, the amplitude of the carotenoid signal correlates univocally with the ATP yield per flash, demonstrating that this signal monitores accurately an energetic state of the membrane directly involved in ATP synthesis.6. Although values of the carotenoid signal much larger than the minimal threshold are present, relax slowly, and contribute to the energy input for phosphorylation, no ATP is formed unless electron flow is induced by a single turnover flash.7. The conclusions drawn are independent from the assumption that a ΔΨ between bulk phases is evaluable from the carotenoid signal.  相似文献   

7.
Recent work showed that chloroplast thylakoid membranes stored in 100 mM KCl-containing media have delocalized energy coupling consistent with a rapid equilibration of the proton gradient between the proton-producing redox steps and the lumen bulk phase (Beard and Dilley 1986). Thylakoids stored in low salt media showed localized energy coupling. A related thylakoid membrane property is the occurrence of sequestered, metastable, acidic domains, associated with pK a 7.5 amine groups. For low salt-stored membranes the domain protons appear to be in the direct (localized) diffusion pathway of protons involved in energizing ATP formation, whereas in thylakoids stored in high KCl, domain protons equilibrated with the lumen during the development of the ATP energization threshold (Theg et al. 1988). This work tested whether the 100 mM KCl storage treatment did or did not cause the dissipation of the metastable acidic domain protons in the dark, storage period. By three criteria, it was found that the 100 mM KCl storage treatment had only a slight tendency to dissipate the acidic domain protons into alkaline media under dark conditions. Storage in KCl does not cause the dissipation of the acidic domains in the dark, but allows domain protons to equilibrate with the lumen after the redox system begins turning over, but before the ATP energization threshold pH is reached. These results must be considered in models of how the thylakoid structure can accommodate metastable acidic domains and how such domain protons diffuse to the CF0-CF1 complexes in energy coupling.Abbreviations PSII photosystem 2 - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(N-morpholine) ethanesulfonic acid - Taps N-tris (hydroxymethyl)-methyl-3-amino-propanesulfonic acid - EPPS N-(2-hydroxyethyl) piperazine-N-3-propanesulfonic acid - gram D gramicidin D This research supported in part by grants from the USDA and NSF.  相似文献   

8.
Summary A feature of the current-voltage (I/V) and conductance-voltage (G/V) characteristics is described, which can be attributed to the action of the proton pump at theChara plasmalemma. The study of pH dependence in the range 4.5 to 11.0 and exposure to metabolic inhibitors confirm the pump involvement.A model describing kinetics of H+-extruding ATPase (Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981.J. Membrane Biol. 63:165–190) is fitted to the data yielding theI/V andG/V relationships of theChara proton pump. The results show that the stoichiometry is 1H+1ATP.  相似文献   

9.
10.
The effect of chemical modifiers of amino acid residues on the proton conductivity of H+-ATPase in inside out submitochondrial particles has been studied. Treatment of submitochondrial particles prepared in the presence of EDTA (ESMP) with the arginine modifiers, phenylglyoxal or butanedione, or the tyrosine modifier, tetranitromethane, caused inhibition of the ATPase activity. Phenylglyoxal and tetranitromethane also caused inhibition of the anaerobic release of respiratory H+ in ESMP as well as in particles deprived of F1 (USMP). Butanedione treatment caused, on the contrary, acceleration of anaerobic proton release in both particles. The inhibition of proton release caused by phenylglyoxal and tetranitromethane exhibited in USMP a sigmoidal titration curve. The same inhibitory pattern was observed with oligomycin and withN,N-dicyclohexylcarbodiimide. In ESMP, relaxation of H+ exhibited two first-order phases, both an expression of the H+ conductivity of the ATPase complex. The rapid phase results from transient enhancement of H+ conduction caused by respiratory H+ itself. Oligomycin,N,N-dicyclohexylcarbodiimide, and tetranitromethane inhibited both phases of H+ release, and butanedione accelerated both. Phenylglyoxal inhibited principally the slow phase of H+ conduction. In USMP, H+ release followed simple first-order kinetics. Oligomycin depressed H+ release, enhanced respiratory H+, and restored the biphasicity of H+ release. Phenylglyoxal and tetranitromethane inhibited H+ release in USMP without modifying its first-order kinetics. Butanedione treatment caused biphasicity of H+ release from USMP, introducing a very rapid phase of H+ release. Addition of soluble F1 to USMP also restored biphasicity of H+ release. A mechanism of proton conduction by F o is discussed based on involvement of tyrosine or other hydroxyl residues, in series with the DCCD-reactive acid residue. There are apparently two functionally different species of arginine or other basic residues: those modified by phenylglyoxal, which facilitate H+ conduction, and those modified by butanedione, which retard H+ diffusion.  相似文献   

11.
In washed cells of cadmium-sensitive Staphylococcus aureus 17810S oxidizing glutamate, initial Cd2+++ influx via the Mn2+ porter down membrane potential () was fast due to involvement of energy generated by two proton pumps—the respiratory chain and the ATP synthetase complex working in the hydrolytic direction. Such an unusual energy drain for rapid initial Cd2+ influx is suggested to be due to a series of toxic events elicited by Cd2+ accumulation down generated via the redox proton pump: (i) strong inhibition of glutamate oxidation accompanied by a decrease of electrochemical proton gradient ( H +) formation via the respiratory chain, (ii) automatic reversal of ATP synthetase from biosynthetic to hydrolytic mode, which was monitored by a decrease of H +-dependent ATP synthesis, (iii) acceleration of the initial Cd2+ influx down generated the reversed ATP synthetase, the alternative proton pump hydrolyzing endogenous ATP. The primary, cadmium-sensitive targets in strain 17810S seem to be dithiols located in the cytoplasmic glutamate oxidizing system, prior to the membrane-embedded NADH oxidation system. Inhibition by Cd2+ of H +-dependent ATP synthesis and of pH gradient (pH)-linked [14C]glutamate transport is a secondary effect due to cadmium-mediated inhibition of H + generation at the cytoplasmic level. In washed cells of cadmium-resistant S. aureus 17810R oxidizing glutamate, Cd2+ accumulation was prevented due to activity of the plasmid-coded Cd2+ efflux system. Consequently, H +-producing and -requiring processes were not affected by Cd2+.  相似文献   

12.
Thomas Graan  Donald R. Ort   《BBA》1982,682(3):395-403
Two saturating single-turnover flashes spaced 100 ms apart are sufficient to achieve ATP formation in isolated chloroplast thylakoids. Two turnovers of the electron carriers result in the accumulation of about 7 nmol H+ / mg chlorophyll. Under the same conditions (i.e., ΔGATP = 38 kJ/mol) a solitary flash is inadequate to produce ATP. The electron flux from the third or any subsequent flash is coupled to ATP formation as efficiently as is observed in continuous light (i.e., ) and produces 0.8 molecules of ATP per coupling factor on each turnover. The yield of ATP per flash increases with declining temperature being largest near 4°C, the lowest value tested. The number of H+ accumulated per flash is independent of temperature so the greater yields of ATP near 4°C indicate that fewer H+ are existing the membrane via nonproductive pathways. The yield of ATP per flash near 4°C is largely independent of flash frequency between 1 and 30 Hz. When the formation of an electrical potential difference is prevented by adequate amounts of valinomycin and potassium the accumulated effects of about eight flashes are required before ATP formation is achieved (i.e., about 26 nmol H+/mg chlorophyll), indicating an average ΔpH/flash in excess of 0.3 units. In the presence of the exchange carrier nigericin, the electrical component of the driving force for ATP formation is enhanced at the expense of the ΔpH. In this case, ATP formation is efficiently coupled to electron flux only at flash frequencies rapid enough to allow a summation of the electrical field. These results clearly demonstrate that any processes which are prerequisites for ATP synthesis (i.e., activation of coupling factor or generation of Δp) are fulfilled by a remarkably small number of charge separations.  相似文献   

13.
14.
Summary The potassium concentration was measured in the cytoplasm, perimicrovillar extracellular space (=vacuole) and intercellular space of leech photoreceptors with double-barrelled potassium-sensitive microelectrodes in darkness and upon photostimulation. The mean intracellular potassium concentration in cells with membrane potentials >50 mV was 100±34 mmol/l. Photostimulation with 90 saturating 20 ms light flashes (1/s) evoked a potassium loss of 10.6±7.6 mmol/l. In the dark, there was no potassium concentration gradient between vacuole and intercellular space (K VAC + =4.5±0.9 mmol/l, K ECS + =4.5±0.5 mmol/l). In both compartments the potassium concentration increased upon repetitive photostimulation. Thus, the potassium loss from the cell is due to potassium movements across both the receptive and the non-receptive membrane domains.The time courses of K+ accumulation and clearance differed in the two extracellular compartments: In the vacuole, potassium increased by 2.8±2.5 mmol/l to a ceiling level which was maintained during the standard train of light flashes. Potassium clearing in the dark was exponential with a half time of 60±26 s. In the intercellular space, repetitive photostimulation produced an initial rapid increase (half time <1 s) of the K+ concentration (mean K max + =1.5±0.6 mmol/l). K+ clearing showed two superimposed components. A rapid one clears intercellular K+ after each light flash. The resultant K+ pulses ride on a slowly decreasing intercellular K+ level, and, following the last flash, K+ transiently undershoots the dark concentration.Ouabain or a decrease in specimen temperature affect only the slow component and abolish the poststimulation K+ undershoot. Thus, the rapid component is interpreted as due to passive K+ dispersal by diffusion through the intercellular spaces, and the slow component and the poststimulation undershoot to K+ clearing by active reuptake of K+ into the photoreceptor cells.K+ disappearance from the vacuole was not affected by ouabain, but a decrease in specimen temperature decreased the rate constant of K+ clearing, which has a Q10 of 1.48. It is concluded that K+ clearing from the vacuole is dominated by passive processes, and that the Na+/K+-pump is possibly localized only in the non-receptive membrane domain.  相似文献   

15.
The protolytic reactions of PSII membrane fragments were analyzed by measurements of absorption changes of the water soluble indicator dye bromocresol purple induced by a train of 10 s flashes in dark-adapted samples. It was found that: a) in the first flash a rapid H+-release takes place followed by a slower H+-uptake. The deprotonation is insensitive to DCMU but is completely eliminated by linolenic acid treatment of the samples; b) the extent of the H+-uptake in the first flash depends on the redox potential of the suspension. In this time domain no H+-uptake is observed in the subsequent flashes; c) the extent of the H+-release as a function of the flash number in the sequence exhibits a characteristic oscillation pattern. Multiphasic release kinetics are observed. The oscillation pattern can be satisfactorily described by a 1, 0, 1, 2 stoichiometry for the redox transitions Si Si+1 (i=0, 1, 2, 3) in the water oxidizing enzyme system Y. The H+-uptake after the first flash is assumed to be a consequence of the very fast reduction of oxidized Q400(Fe3+) formed due to dark incubation with K3[Fe(CN)6]. The possible participation of component Z in the deprotonation reactions at the PSII donor side is discussed.Abbreviations A protonizable group at the PSII acceptor side - BCP Bromocresol Purple - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FWHM Full Width at Half Maximum - QA, QB primary and secondary plastoquinone at PSII acceptor side - Q400 redox group at PSII-acceptor side (high spin Fe2+) - P680 Photoactive chlorophyll of PSII reaction center - Si redox states of the catalytic site of water oxidation - Z redox component connecting the catalytic site of water oxidation with the reaction center  相似文献   

16.
C.A. Wraight 《BBA》1979,548(2):309-327
The photoreduction of ubiquinone in the electron acceptor complex (Q1Q11) of photosynthetic reaction centers from Rhodopseudomonas sphaeroides, R26, was studied in a series of short, saturating flashes. The specific involvement of H+ in the reduction was revealed by the pH dependence of the electron transfer events and by net H+ binding during the formation of ubiquinol, which requires two turnovers of the photochemical act. On the first flash Q11 receives an electron via Q1 to form a stable ubisemiquinone anion (Q??11); the second flash generates Q??1. At low pH the two semiquinones rapidly disproportionate with the uptake of 2 H+, to produce Q11H2. This yields out-of-phase binary oscillations for the formation of anionic semiquinone and for H+ uptake. Above pH 6 there is a progressive increase in H+ binding on the first flash and an equivalent decrease in binding on the second flash until, at about pH 9.5, the extent of H+ binding is the same on all flashes. The semiquinone oscillations, however, are undiminished up to pH 9. It is suggested that a non-chromophoric, acid-base group undergoes a pK shift in response to the appearance of the anionic semiquinone and that this group is the site of protonation on the first flash. The acid-base group, which may be in the reaction center protein, appears to be subsequently involved in the protonation events leading to fully reduced ubiquinol. The other proton in the two electron reduction of ubiquinone is always taken up on the second flash and is bound directly to Q??11. At pH values above 8.0, it is rate limiting for the disproportionation and the kinetics, which are diffusion controlled, are properly responsive to the prevailing pH. Below pH 8, however, a further step in the reaction mechanism was shown to be rate limiting for both H+ binding electron transfer following the second flash.  相似文献   

17.
The effects of temperature on the dark relaxation kinetics of nonradiative energy dissipation in photosystem II were compared in lettuce (Lactuca sativa L.) chloroplasts and leaves of Aegialitis annulata R. Br. After high levels of violaxanthin de-epoxidation in the light, Aegialitis leaves showed a marked delay in the dark relaxation of nonradiative dissipation, measured as non-photochemical quenching (NPQ) of photosystem II chlorophyll a fluorescence. Aegialitis leaves also maintained a moderately high adenylate energy charge at low temperatures during and after high-light exposure, presumably because of their limited carbon-fixation capacity. Similarly, dark-sustained NPQ could be induced in lettuce chloroplasts after de-epoxidizing violaxanthin and light-activating the ATP synthase. The duration and extent of dark-sustained NPQ were strongly enhanced by low temperatures in both chloroplasts and leaves. Further, the NPQ sustained at low temperatures was rapidly reversed upon warming. In lettuce chloroplasts, low temperatures sharply decreased the ATP-hydrolysis rate while increasing the duration and extent of the resultant trans-thylakoid proton gradient that elicits the NPQ. This was consistent with a higher degree of energy-coupling, presumably due to reduced proton diffusion through the thylakoid membrane at the lower temperatures. The chloroplast adenylate pool was in equilibrium with the adenylate kinase and therefore both ATP and ADP contributed to reverse coupling. The low-temperature-enhanced NPQ quenched the yields of the dark level (Fo) and the maximal (Fm) fluorescence proportionally in both chloroplasts and leaves. The extent of NPQ in the dark was inversely related to the efficiency of photosystem II, and very similar linear relationships were obtained over a wide temperature range in both chloroplasts and leaves. Likewise, the dark-sustained absorbance changes, caused by violaxanthin de-epoxidation (A508nm) and energy-dependent light scattering (A536nm) were strikingly similar in chloroplasts and leaves. Therefore, we conclude that the dark-sustained, low-temperature-stimulated NPQ in chloroplasts and leaves is apparently directly dependent on lumen acidification and chloroplastic ATP hydrolysis. In leaves, the ATP required for sustained NPQ is evidently provided by oxidative phosphorylation in the mitochondria. The functional significance of this quenching process and implications for measurements of photo-protection versus photodamage in leaves are discussed.Abbreviations and Symbols A antheraxanthin - Chl chlorophyll - DPS de-epoxidation state of the xanthophyll cycle, ([Z+A]/[V+A+Z]) - F, F steady-state fluorescence in the absence, presence of thylakoid energization - Fo, Fo dark fluorescence level in the absence, presence of thylakoid energization - Fm, Fm maximal fluorescence in absence, presence of thylakoid energization - NPQ nonphotochemical quenching (Fm/Fm)–1 - V violaxanthin - Z zeaxanthin - NRD nonradiative dissipation - PFD photon flux density - [2ATP+ADP] - pH trans-thylakoid proton gradient - S pH-dependent light scattering - PSII (Fm–F)/Fm, photon yield of PSII photochemistry at the actual reduction state in the light or dark - [ATP+ADP+AMP] We thank Connie Shih for skillful assistance in growing plants and for conducting HPLC analyses. Support from an NSF/USDA/DOE postdoctoral training grant to A.G. is gratefully acknowledged. A.G. also wishes to thank Prof. Govindjee for valuable discussions. C.I.W.-D.P.B. Publication No. 1197.  相似文献   

18.
Flash-induced amperometric signals were measured with a Joliot-type O2 rate electrode in spinach Photosystem II (PS II) membrane fragments exposed to very low concentrations of added hydroxylamine or hydrogen peroxide. In both cases anomalous O2 signals were observed on the first two flashes, and oscillating four-flash patterns were observed on subsequent flashes. The anomalous signals were eliminated in the presence of catalase but not EDTA. The rise times of the O2-release kinetics associated with the anomalous signals were slow (ca. 20 ms with NH2OH and ca. 120 ms with H2O2) compared to the kinetics of O2 release on subsequent flashes and in control membranes (3–6 ms). It is proposed that when the intact PS II O2-evolving complex is perturbed with small concentrations of added reductant, H2O2 can gain access and bind to the complex. Bound H2O2 can then reduce lower S states in some centers leading to anomalous O2 signals on the first two flashes. A model is presented to explain both types of anomalous O2 production. Oxygen observed on the third and subsequent flashes is due to the normal photosynthetic O2-evolution process arising from the S3-state. Anomalous O2 production could be a protective mechanism in PS II centers subjected to stress conditions.Abbreviations DCIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - MES 4-morpholine-ethanesulfonic acid - OEC oxygen-evolving complex - PS II Photosystem II - Yi O2 flash yield on the ith flash - Yss steady-state O2 flash yield level in algae, chloroplasts, or thylakoids after flash-driven S-state oscillations have been damped Formerly, the Solar Energy Research Institute and operated by the Midwest Research Institute for the US Department of Energy under Contract DE-AC-02-83CH10093. Government and MRI retain non-exclusive, royalty-free license to publish or reproduce published articles, or allow others to do so for Government purposes.  相似文献   

19.
Flash-driven ATP formation by spinach chloroplast thylakoids, using the luciferin luminescence assay to detect ATP formed in single turnover flashes, was studied under conditions where a membrane protein amine buffering pool was either protonated or deprotonated before the beginning of the flash trains. The flash number for the onset of ATP formation was delayed by about 10 flashes (from 15 to about 25) when the amine pool was deprotonated as compared to the protonated state. The delay was substantially reversed again by reprotonating the pool upon application of 20–30 single-turnover flashes and 8 min of dark before addition of ADP, Pi, and the luciferin system. In the case of deprotonation by desaspidin, the uncoupler was removed by binding to BSA before the reprotonating flashes were given. Reprotonation was carried out before addition of ADP and Pi, to avoid a possible interference by the ATP-ase, which can energize the system by pumping protons. The reprotonated state, as indicated by an onset lag of about 15 flashes rather than 25 for the deprotonated state, was stable in the dark over extended dark times. The number of protons released by 10 flashes is approximately 30 nmol H+ (mg chl)–1, an amount similar to the size of the reversibly protonated amine group buffering pool. The data are consistent with the hypothesis that the amine buffering groups must be in the protonated state before any protons proceed to the coupling complex and energize ATP formation. Other work has suggested that the amine buffering pool is sequestered within membrane proteins rather than being exposed directly to the inner aqueous bulk phase. Therefore, it is possible that the sequested amine group array may provide localized association-dissociation sites for proton movement to the coupling complex.  相似文献   

20.
The way misses happen in oxygen evolution is subject to debate (Govindjee et al. 1985). We recently observed a linear lowering of the miss probability with the flash number (Meunier and Popovic 1989). Therefore, we investigated in Dunaliella tertiolecta the link between the average miss probability and the redox state of plastoquinone after n flashes. The effect of flashes was to oxidize the plastoquinone pool; we found that the oxidation of plastoquinone highly correlated (linear regression: R 2=0.996) with the lowering of the miss probability. The flash frequency was found to affect both the miss probability and the redox state of plastoquinone. When pre-flashes were given using a high flash frequency (10 Hz), the plastoquinone pool was oxidized and misses were low; however, if long dark intervals between flashes were used, the oxidizing effect of flashes was lost and the misses were high. We could not explain our results by assuming equal misses over all S-states; but unequal misses, caused by deactivations, were coherent with our results. We deduced that chlororespiration was responsible for the reduction of plastoquinone in the dark interval between flashes. We compared oxygen evolution with and without benzoquinone, using a low flash frequency (0.5 Hz) for maximum misses. Benzoquinone lowered the misses from 34% to 3%, and raised the amplitude of oxygen evolution by more than a factor of two (2). From this we deduced that the charge carrier C postulated to explain misses (Lavorel and Maison-Peteri 1983) did not account for more than 3% of miss probability in Dunaliella tertiolecta. These results indicate that the misses in oxygen evolution are controlled by the redox state of plastoquinone, through deactivations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号