首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat cells transformed by the B77 strain of avian sarcoma virus produce no virus-like particles, yet B77 virus was rescued from these cells by Sendai virus-mediated fusion with chicken cells. This virus rescue was not affected by treatment of the chicken cells with agents that rendered the cells incapable of dividing, although such treatment greatly reduced the ability of the chicken cells to plate as infectious centers after infection with B77 virus. Fusion of R(B77) cells with chicken erythrocytes also led to virus rescue, although with less efficiency than fusion with chicken fibroblasts. Therefore, virus rescue was probably due to a factor or factors contributed by chicken cells which aid in virus production.  相似文献   

2.
Rous sarcoma virus (RSV)-specific ribonucleic acid (RNA) in virus-producing chicken cells and non-virus-producing rat cells infected with RSV was studied by hybridization with the endogenous deoxyribonucleic acid (DNA) product of the RSV virion DNA polymerase system. By hybridizing the total DNA product with excess virion RNA, the product DNA was separated into hybridized (“minus”) and nonhybridized (“plus”) DNA. The “minus” DNA was complementary to at least 20% of the RNA from RSV which remained of high molecular weight after denaturation. A maximum of approximately 65% hybridization was observed between “minus” DNA and RSV RNA or RSV-infected chicken cell RNA. A maximum of about 60% hybridization was observed between “minus” DNA and RSV-infected rat cell RNA. RSV-infected chicken cells contained RSV-specific RNA equivalent to about 6,000 virions per cell. RSV-infected rat cells contained RSV-specific RNA equivalent to approximately 400 virions per cell. Neither cell type contained detectable RNA complementary to virion RNA. The RSV-specific RNA in RSV-infected rat cells did not appear to be qualitatively different from that in RSV-infected chicken cells.  相似文献   

3.
An experimental procedure developed to concentrate fungal viruses from large volumes of homogenized mycelia with water-soluble polymers, such as polyethylene glycol, possesses advantages over more conventional methods. Concentration of the Penicillium stoloniferum fast-moving virus from mycelial homogenates after addition of polyethylene glycol was rapid and produced large quantities of pure virus.  相似文献   

4.
Infectious Rous Sarcoma Virus and Reticuloendotheliosis Virus DNAs   总被引:41,自引:33,他引:8       下载免费PDF全文
An efficient and quantitative assay for infectious Rous sarcoma virus and reticuloendotheliosis virus DNAs is described. The specific infectivities of viral DNA corresponded to one infectious unit per 10(5) to 10(6) viral DNA molecules. Infection with viral DNA followed one-hit kinetics. The minimal size of infectious Rous sarcoma virus DNA was approximately 6 million daltons, whereas the minimal size of infectious reticuloendotheliosis virus DNA was larger, 10 to 20 million daltons.  相似文献   

5.
6.
Labeled virions of Rous sarcoma virus (RSV) were disrupted with detergent and analyzed on equilibrium sucrose density gradients. A core fraction at a density of approximately 1.24 g/cc contained all of the (3)H-uridine label and about 30% of the (3)H-leucine label from the virions. Endogenous viral deoxyribonucleic acid (DNA) polymerase activity was only found in the same location. Additional ribonucleic acid (RNA)- and DNA-dependent DNA polymerase activities were found at the top of the gradients. RNA-dependent and DNA-dependent DNA polymerase activities were also found in RSV-converted chicken cells. Particles containing these activities were released from cells by detergent and were shown to contain viral RNA. These particles were analyzed on equilibrium sucrose density gradients and were found to have densities different from virion cores.  相似文献   

7.
The Gag proteins of retroviruses are the only viral products required for the release of membrane-enclosed particles by budding from the host cell. Particles released when these proteins are expressed alone are identical to authentic virions in their rates of budding, proteolytic processing, and core morphology, as well as density and size. We have previously mapped three very small, modular regions of the Rous sarcoma virus (RSV) Gag protein that are necessary for budding. These assembly domains constitute only 20% of RSV Gag, and alterations within them block or severely impair particle formation. Regions outside of these domains can be deleted without any effect on the density of the particles that are released. However, since density and size are independent parameters for retroviral particles, we employed rate-zonal gradients and electron microscopy in an exhaustive study of mutants lacking the various dispensable segments of Gag to determine which regions would be required to constrain or define the particle dimensions. The only sequence found to be absolutely critical for determining particle size was that of the initial capsid cleavage product, CA-SP, which contains all of the CA sequence plus the spacer peptides located between CA and NC. Some regions of CA-SP appear to be more important than others. In particular, the major homology region does not contribute to defining particle size. Further evidence for interactions among CA-SP domains was obtained from genetic complementation experiments using mutant ΔNC, which lacks the RNA interaction domains in the NC sequence but retains a complete CA-SP sequence. This mutant produces low-density particles heterogeneous in size. It was rescued into particles of normal size and density, but only when the complementing Gag molecules contained the complete CA-SP sequence. We conclude that CA-SP functions during budding in a manner that is independent of the other assembly domains.  相似文献   

8.
Enzymes and Nucleotides in Virions of Rous Sarcoma Virus   总被引:13,自引:10,他引:3       下载免费PDF全文
In addition to the previously described deoxyribonucleic acid (DNA) polymerase, DNA ligase, DNA exonuclease, and DNA endonuclease activities, purified virions of Schmidt-Ruppin strain of Rous sarcoma virus (SRV) have nucleotides and nucleotide kinase, phosphatase, hexokinase, and lactate dehydrogenase activities. The SRV virions have no glucose-6-phosphate dehydrogenase activity. All enzyme activities, but glucose-6-phosphate dehydrogenase and adenosine triphosphatase, were increased by disruption of the virions. The DNA polymerase, DNA ligase, and hexokinase activities had a higher specific activity in purified virion cores. It is suggested that during assembly virions of SRV may pick up cytoplasmic components which bind to virion proteins. The role of these components in viral replication is not known at present.  相似文献   

9.
Virus Recovery in Chicken Cells Tested with Rous Sarcoma Cell DNA   总被引:15,自引:0,他引:15  
DNA from non-virus-producing RSV transformed mammalian cells converts chicken fibroblasts into Rous sarcoma cells producing infectious RSV particles. The recovered virus is the same biologically and antigenically as the virus which originally transformed the mammalian cells.  相似文献   

10.
Production and Purification of Large Amounts of Rous Sarcoma Virus   总被引:19,自引:3,他引:16       下载免费PDF全文
Procedures are described for production and purification of large amounts of Rous sarcoma virus. The virus was produced by Rous sarcoma virus-transformed chicken embryo fibroblasts in roller culture which produced up to 6 mg of virus per day per liter of supernatant fluid. Various methods of concentrating virus were evaluated; pelleting yielded the best results in terms of recovery of infectious virus. Purification was achieved by means of successive velocity and equilibrium density centrifugation by using sucrose solutions made in low-salt buffer. A rapid method for the optical density measurement of virus concentration was also developed.  相似文献   

11.
12.
13.
Cultured cells of mammalian tumors induced by ribonucleic acid (RNA)-containing oncogenic viruses were examined for production of virus. The cell lines were established from tumors induced in rats and hamsters with either Rous sarcoma virus (Schmidt-Ruppin or Bryan strains) or murine sarcoma virus (Moloney strain). When culture fluids from each of the cell lines were examined for transforming activity or production of progeny virus, none of the cell lines was found to be infectious. However, electron microscopic examination of the various cell lines revealed the presence of particles in the rat cells transformed by either Rous sarcoma virus or murine sarcoma virus. These particles, morphologically similar to those associated with murine leukemias, were found both in the extracellular fluid concentrates and in whole-cell preparations. In the latter, they were seen budding from the cell membranes or lying in the intercellular spaces. No viruslike particles were seen in preparations from hamster tumors. Exposure of the rat cells to (3)H-uridine resulted in the appearance of labeled particles with densities in sucrose gradients typical of virus (1.16 g/ml.). RNA of high molecular weight was extracted from these particles, and double-labeling experiments showed that this RNA sedimented at the same rate as RNA extracted from Rous sarcoma virus. None of the hamster cell lines gave radioactive peaks in the virus density range, and no extractable high molecular weight RNA was found. These studies suggest that the murine sarcoma virus produces an infection analogous to certain "defective" strains of Rous sarcoma virus, in that particles produced by infected cells have a low efficiency of infection. The control of the host cell over the production and properties of the RNA-containing tumorigenic viruses is discussed.  相似文献   

14.
Influenza virus may be purified and rendered free of extraneous proteins by precipitation and aggregation with polyethylene glycol at polymer concentrations of 1 to 4%. The precipitated virus is superior antigenically to the virus in monomeric and in the ether dissociated forms. When the virus is precipitated at polyethylene glycol concentrations of 5% and higher the virus is not aggregated and is associated with extraneous protein which co-precipitates with the infectious agent.  相似文献   

15.
Chick embryo fibroblasts brought into stationary phase of growth by maintenance in serum-free Eagle's MEM medium were infected with the Bryan strain of Rous sarcoma virus (B-RSV) and incubated for 18 hr in the presence of 5-bromo-deoxyuridine (BUdR). The cells were then allowed to resume growth and deoxyribonucleic acid (DNA) synthesis by addition of an enriched F12 medium containing serum and RSV antibody to prevent spread of viral infection. After 48 hr, the cultures were exposed for various periods to visible light, overlaid with solid culture medium, and observed for the appearance of foci of transformed cells. In cultures treated with BUdR at the time of infection, exposure to light resulted in a suppression of focus formation of from 50 to 90% in various experiments. Treatment with BUdR for 18 hr before infection or on the day after infection, followed by exposure to light, had no effect on focus formation. In cultures in which almost all cells were infected, treatment with BUdR followed by exposure to light did not result in cell death. This suggests that suppression of transformation is not due to selective killing of infected cells by this treatment but rather to the intracellular inactivation of the transforming ability of Rous sarcoma proviral DNA.  相似文献   

16.
Chick embryo cells infected with a mutant (Ta) of the Bryan high-titer strain of Rous sarcoma virus (RSV-BH) are morphologically transformed at 36 C but appear similar to uninfected cells at 41 C. When cells infected with RSV-BH-Ta are switched from 41 to 36 C, morphological changes characteristic of transformation are observable within 10 min. The transformation is reversible; cells shifted from 36 to 41 C have been observed to lose their transformed morphology within 1 hr. The transformation after a shift in temperature is unaffected by inhibition of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or protein synthesis, demonstrating that the proteins involved in the morphological change are already present. Transformed cells infected with RSV-BH or RSV-BH-Ta take up hexose and synthesize hyaluronic acid at higher rates than uninfected cells or RSV-BH-Ta-infected cells grown at 41 C. However, inhibition of either protein or RNA synthesis, but not DNA synthesis, prevented the induction of increased hexose uptake and hyaluronic acid synthesis after a shift of RSV-BH-Ta-infected cells from 41 to 36 C. Therefore, these biochemical changes are secondary to a more basic change responsible for morphological transformation.  相似文献   

17.
Virus-specific antigens were studied in hamster cells transformed by Rous sarcoma virus (RSV). Antigens were localized in the cytoplasm, as demonstrated by fluorescent antibody staining of fixed cells as well as by complement fixation (CF) following subcellular fractionation. Cytoplasmic extracts were analyzed by velocity and isopycnic centrifugation. CF antigens were found in a soluble form and in association with membranes and polyribosomes. Isolated plasma membranes had no CF antigen. Both soluble and particulate fractions with CF activity contained the same antigenic determinants by Ouchterlony analysis. These antigenic determinants were identical to those released by ether treatment of RSV.  相似文献   

18.
ISATTN β-thiosemicarbazone (IBT) and its N-methyl and N-ethyl derivatives have been shown to inhibit the growth of a wide range of viruses containing DNA and RNA1. In a recent study, the spectrum of antiviral activity of these compounds, which previously included members of the poxvirus, adenovirus and herpesvirus groups, was extended to the viruses of the Picornavirus, reovirus, arbovirus, myxovirus and paramyxovirus groups. In view of the broad range of inhibitory activity exhibited by these compounds and the fact that the methyl derivative (methisazone, Marboran) is effective clinically in the prevention of smallpox2, we have tested their effect against Rous sarcoma virus (RSV).  相似文献   

19.
A ribonucleoprotein particle containing about 20% ribonucleic acid (RNA), and containing little if any phospholipid or glucosamine, was recovered in high yield after treatment of Schmidt-Ruppin strain of Rous sarcoma virus and B77 virus with the nonionic detergent Nonidet P-40. This structure, which probably derives from the internal ribonucleoprotein filament described in electron microscopy studies, contained 80 to 90% of the viral 60 to 70S RNA and only about 10% of the protein present in intact virions. It sedimented in glycerol density gradients at approximately 130S and had a buoyant density in sucrose of about 1.34 g/ml. Studies with (32)P-labeled virus indicated that the ribonucleoprotein particle contained approximately 30 4S RNA molecules per 10(7) daltons of high-molecular-weight viral RNA. Intact virions contained about 70 4S RNA molecules per 10(7) daltons of high-molecular-weight RNA. Electrophoretic studies in dodecyl sulfate-containing polyacrylamide gels showed that the ribonucleoprotein particle contained only 5 of the 11 polypeptides found in the virion; of these the major component was a polypeptide weighing 14,000 daltons.  相似文献   

20.
DNA Ligase and Exonuclease Activities in Virions of Rous Sarcoma Virus   总被引:17,自引:0,他引:17  
Virions of Schmidt-Ruppin avian sarcoma virus have both polynucleotide ligase activity and DNA exonuclease activity. These enzymes complete the machinery necessary to transfer information from RNA to double stranded DNA integrated in the host DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号