首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Variations in GC content between genomes have been extensively documented. Genomes with comparable GC contents can, however, still differ in the apportionment of the G and C nucleotides between the two DNA strands. This asymmetric strand bias is known as GC skew. Here, we have investigated the impact of differences in nucleotide skew on the amino acid composition of the encoded proteins. We compared orthologous genes between animal mitochondrial genomes that show large differences in GC and AT skews. Specifically, we compared the mitochondrial genomes of mammals, which are characterized by a negative GC skew and a positive AT skew, to those of flatworms, which show the opposite skews for both GC and AT base pairs. We found that the mammalian proteins are highly enriched in amino acids encoded by CA-rich codons (as predicted by their negative GC and positive AT skews), whereas their flatworm orthologs were enriched in amino acids encoded by GT-rich codons (also as predicted from their skews). We found that these differences in mitochondrial strand asymmetry (measured as GC and AT skews) can have very large, predictable effects on the composition of the encoded proteins.  相似文献   

3.
In many bacterial genomes, the leading and lagging strands have different skews in base composition; for example, an excess of guanosine compared to cytosine on the leading strand. We find that Chlamydia genes that have switched their orientation relative to the direction of replication, for example by inversion, acquire the skew of their new ``host' strand. In contrast to most evolutionary processes, which have unpredictable effects on the sequence of a gene, replication-related skews reflect a directional evolutionary force that causes predictable changes in the base composition of switched genes, resulting in increased DNA and amino acid sequence divergence. Received: 27 April 2000 / Accepted: 1 August 2000  相似文献   

4.
Variation in GC content, GC skew and AT skew along genomic regions was examined at third codon positions in completely sequenced prokaryotes. Eight out of nine eubacteria studied show GC and AT skews that change sign at the origin of replication. The leading strand in DNA replication is G-T rich at codon position 3 in six eubacteria, but C-T rich in two Mycoplasma species. In M. genitalium the AT and GC skews are symmetrical around the origin and terminus of replication, whereas its GC content variation has been shown to have a centre of symmetry elsewhere in the genome. Borrelia burgdorferi and Treponema pallidum show extraordinary extents of base composition skew correlated with direction of DNA replication. Base composition skews measured at third codon positions probably reflect mutational biases, whereas those measured over all bases in a sequence (or at codon positions 1 and 2) can be strongly affected by protein considerations due to the tendency in some bacteria for genes to be transcribed in the same direction that they are replicated. Consequently in some species the direction of skew for total genomic DNA is opposite to that for codon position 3. Received: 2 February 1998 / Accepted: 15 June 1998  相似文献   

5.
Several studies have shown that in vertebrate mtDNAs the nucleotide content at fourfold degenerate sites is well correlated with the site’s time of exposure to the single-strand state, as predicted from the asymmetrical model of mtDNA replication. Here we examine whether the same explanation may hold for the regional variation in nucleotide content in the maternal and paternal mtDNAs of the mussel Mytilus galloprovincialis. The origin of replication of the heavy strand (OH) of these genomes has been previously established. A systematic search of the two genomes for sequences that are likely to act as the origin of replication of the light strand (OL) suggested that the most probable site lies within the ND3 gene. By adopting this OL position we calculated times of exposure for 0FD (nondegenerate), 2FD (twofold degenerate), and 4FD (fourfold degenerate) sites of the protein-coding part of the genome and for the rRNA, tRNA and noncoding parts. The presence of thymine and absence of guanine at 4FD sites was highly correlated with the presumed time of exposure. Such an effect was not found for the 2FD sites, the rRNA, the tRNA, or the noncoding parts. There was a trend for a small increase in cytosine at 0FD sites with exposure time, which is explicable as the result of biased usage of 4FD codons. The same analysis was applied to a recently sequenced mitochondrial genome of Mytilus trossulus and produced similar results. These results are consistent with the asymmetrical model of replication and suggest that guanine oxidation due to single-strand exposure is the main cause of regional variation of nucleotide content in Mytilus mitochondrial genomes. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. [Reviewing Editor: Dr. David Pollock]  相似文献   

6.
Based on 152 mitochondrial genomes and 36 bacterial chromosomes that have been completely sequenced, as well as three long contigs for human chromosomes 6, 21, and 22, we examined skews of mononucleotide frequencies and the relative abundance of dinucleotides in one DNA strand. Each group of these genomes has its own characteristics. Regarding mitochondrial genomes, both CpG and GpT are underrepresented, while either GpG or CpC or both are overrepresented. The relative frequency of nucleotide T vs A and of nucleotide G vs C is strongly skewed, due presumably to strand asymmetry in replication errors and unidirectional DNA replication from single origins. Exceptions are found in the plant and yeast mitochondrial genomes, each of which may replicate from multiple origins. Regarding bacterial genomes, the ``universal' rule of CpG deficiency is restricted to archaebacteria and some eubacteria. In other eubacteria, the most underrepresented dinucleotide is either TpA or GpT. In general, there are significant T vs A and G vs C skews in each half of the bacterial genome, although these are almost exactly canceled out over the whole genome. Regarding human chromosomes 6, 21, and 22, dinucleotide CpG tends to be avoided. The relative frequency of mononucleotides exhibits conspicuous local skews, suggesting that each of these chromosomal segments contains more than one DNA replication origin. It is concluded that, when there are several replicons in a genomic region, not only the number of DNA replication origins but also the directionality is important and that the observed patterns of nucleotide frequencies in the genome strongly support the hypothesis of strand asymmetry in replication errors. Received: 1 November 2000 / Accepted: 12 March 2001  相似文献   

7.
DNA replication was recently shown to induce the formation of compositional skews in the genomes of the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. In this work, I have characterized further GC and TA skew variations in the vicinity of S. cerevisiae replication origins and termination sites, and defined asymmetry indices for origin analysis and prediction. The presence of skew jumps at some termination sites in the S. cerevisiae genome was established. The majority of S. cerevisiae replication origins are marked by an oriented consensus sequence called ACS, but no evidence could be found for asymmetric origin firing that would be linked to ACS orientation. Asymmetry indices related to GC and TA skews were defined, and a global asymmetry index IGC,TA was described. IGC,TA was found to strongly correlate with origin efficiency in S. cerevisiae and to allow the determination of sets of intergenes significantly enriched in origin loci. The generalized use of asymmetry indices for origin prediction in naive genomes implies the determination of the direction of the skews, i.e. the identification of which strand, leading or lagging, is enriched in G and which one is enriched in T. Recent work indicates that in Candida albicans and in several related species, centromeres contain early and efficient replication origins. It has been proposed that the skew jumps observed at these positions would reflect the activity of these origins, thus allowing to determine the direction of the skews in these genomes. However, I show here that the skew jumps at C. albicans centromeres are not related to replication and that replication-associated GC and TA skews in C. albicans have in fact the opposite directions of what was proposed.  相似文献   

8.
9.
10.
11.
The DNA strands in most prokaryotic genomes experience strand-biased spontaneous mutation, especially C→T mutations produced by deamination that occur preferentially in the leading strand. This has often been invoked to account for the asymmetry in nucleotide composition, typically measured by GC skew, between the leading and the lagging strand. Casting such strand asymmetry in the framework of a nucleotide substitution model is important for understanding genomic evolution and phylogenetic reconstruction. We present a substitution model showing that the increased C→T mutation will lead to positive GC skew in one strand but negative GC skew in the other, with greater C→T mutation pressure associated with greater differences in GC skew between the leading and the lagging strand. However, the model based on mutation bias alone does not predict any positive correlation in GC skew between the leading and lagging strands. We computed GC skew for coding sequences collinear with the leading and lagging strands across 339 prokaryotic genomes and found a strong and positive correlation in GC skew between the two strands. We show that the observed positive correlation can be satisfactorily explained by an improved substitution model with one additional parameter incorporating a general trend of C avoidance.  相似文献   

12.

Background

Animal mitochondrial genomes are physically separate from the much larger nuclear genomes and have proven useful both for phylogenetic studies and for understanding genome evolution. Within the phylum Arthropoda the subphylum Crustacea includes over 50,000 named species with immense variation in body plans and habitats, yet only 23 complete mitochondrial genomes are available from this subphylum.

Results

I describe here the complete mitochondrial genome of the crustacean Squilla mantis (Crustacea: Malacostraca: Stomatopoda). This 15994-nucleotide genome, the first described from a hoplocarid, contains the standard complement of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a non-coding AT-rich region that is found in most other metazoans. The gene order is identical to that considered ancestral for hexapods and crustaceans. The 70% AT base composition is within the range described for other arthropods. A single unusual feature of the genome is a 230 nucleotide non-coding region between a serine transfer RNA and the nad1 gene, which has no apparent function. I also compare gene order, nucleotide composition, and codon usage of the S. mantis genome and eight other malacostracan crustaceans. A translocation of the histidine transfer RNA gene is shared by three taxa in the order Decapoda, infraorder Brachyura; Callinectes sapidus, Portunus trituberculatus and Pseudocarcinus gigas. This translocation may be diagnostic for the Brachyura. For all nine taxa nucleotide composition is biased towards AT-richness, as expected for arthropods, and is within the range reported for other arthropods. Codon usage is biased, and much of this bias is probably due to the skew in nucleotide composition towards AT-richness.

Conclusion

The mitochondrial genome of Squilla mantis contains one unusual feature, a 230 base pair non-coding region has so far not been described in any other malacostracan. Comparisons with other Malacostraca show that all nine genomes, like most other mitochondrial genomes, share a bias toward AT-richness and a related bias in codon usage. The nine malacostracans included in this analysis are not representative of the diversity of the class Malacostraca, and additional malacostracan sequences would surely reveal other unusual genomic features that could be useful in understanding mitochondrial evolution in this taxon.  相似文献   

13.
14.

Background

Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes.

Results

We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13 mitochondrial protein-coding gene sequences consistently yield trees that place pseudoscorpions as sister to acariform mites.

Conclusion

The well-supported phylogenetic placement of pseudoscorpions as sister to Acariformes differs from some previous analyses based on morphology. However, these two lineages share multiple molecular evolutionary traits, including substantial mitochondrial genome rearrangements, extensive nucleotide substitution, and loss of helices in their inferred tRNA and rRNA structures.  相似文献   

15.
This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.  相似文献   

16.
The genomes of the spirochaetes Borrelia burgdorferi and Treponema pallidum show strong strand-specific skews in nucleotide composition, with the leading strand in replication being richer in G and T than the lagging strand in both species. This mutation bias results in codon usage and amino acid composition patterns that are significantly different between genes encoded on the two strands, in both species. There are also substantial differences between the species, with T.pallidum having a much higher G+C content than B. burgdorferi. These changes in amino acid and codon compositions represent neutral sequence change that has been caused by strong strand- and species-specific mutation pressures. Genes that have been relocated between the leading and lagging strands since B. burgdorferi and T.pallidum diverged from a common ancestor now show codon and amino acid compositions typical of their current locations. There is no evidence that translational selection operates on codon usage in highly expressed genes in these species, and the primary influence on codon usage is whether a gene is transcribed in the same direction as replication, or opposite to it. The dnaA gene in both species has codon usage patterns distinctive of a lagging strand gene, indicating that the origin of replication lies downstream of this gene, possibly within dnaN. Our findings strongly suggest that gene-finding algorithms that ignore variability within the genome may be flawed.  相似文献   

17.
18.
The complete mitochondrial DNA (mtDNA) genome of the Eunapius subterraneus (Porifera, Demospongiae), a unique stygobitic sponge, was analyzed and compared with previously published mitochondrial genomes from this group. The 24,850 bp long mtDNA genome is circular with the same gene composition as found in other metazoans. Intergenic regions (IGRs) comprise 24.7% of mtDNA and are abundant with direct and inverted repeats and palindromic elements as well as with open reading fames (ORFs) whose distribution and homology was compared with other available mt genomes with a special focus on freshwater sponges. Phylogenetic analyses based on concatenated amino acid sequences from 12 mt protein genes placed E. subterraneus in a well-supported monophyletic clade with the freshwater sponges, Ephydatia muelleri and Lubomirskia baicalensis. Our study showed high homology of mtDNA genomes among freshwater sponges, implying their recent split.  相似文献   

19.
The nucleotide sequence of a mitochondrial genome of the pulmonate gastropod molluscCepaea nemoralis has been determined. Contained within the 14,100 basepairs (bp) are the two ribosomal RNA genes and 13 protein coding genes typical of metazoan mitochondrial genomes. TheCepaea mtDNA does contain a gene for ATPase subunit 8, like the clausiliid pulmonate,Albinaria, and the chiton,Katharina, but unlike the bivalve mollusc,Mytilus. The mitochondrial genetic code ofCepaea is proposed to be the same as that ofMytilus, Katharina, andDrosophila. Only 14 putative tRNA genes are presented, although there is sufficient unassigned sequence to encode the remainder of the expected total of 22 tRNA genes. These 14 tRNA genes are a mixture of standard cloverleaf structures and nonstandard structures containing TV replacement loops as seen in nematode and mosquito mitochondrial genomes. If the eight unidentified tRNA genes are indeed present, very little unassigned sequence would remain to serve as a control region. Genes are transcribed from both strands of the molecule. Base composition is the least biased for any reported animal mitochondrial genome and is also very little skewed between strands using measures independent of base composition. TheCepaea mitochondrial gene order is quite unlike that of any other reported metazoan mtDNA, with the exception of the recently reported partial sequences ofAlbinaria. No gene bound-aries are shared among all the reported molluscan taxa, demonstrating a complete lack of conservation of mitochondrial gene order across the phylum Mollusca.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号