首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The G-protein-coupled receptors (GPCRs) are one of the largest protein families in human and other animal genomes, but no more than 10 GPCRs have been characterized in fungi. Do fungi contain only this handful or are there more receptors to be discovered? We asked this question using the recently sequenced genome of the fungal plant pathogen Magnaporthe grisea.

Results

Proteins with significant similarity to fungus-specific and other eukaryotic GPCRs were identified in M. grisea. These included homologs of known fungal GPCRs, the cAMP receptors from Dictyostelium, and a steroid receptor mPR. We also identified a novel class of receptors typified by PTH11, a cell-surface integral membrane protein required for pathogenicity. PTH11 has seven transmembrane regions and an amino-terminal extracellular cysteine-rich EGF-like domain (CFEM domain), a characteristic also seen in human GPCRs. Sixty-one PTH11-related proteins were identified in M. grisea that shared a common domain with homologs in Neurospora crassa and other fungi belonging to this subphylum of the Ascomycota (the Pezizomycotina). None was detected in other fungal groups (Basidiomycota or other Ascomycota subphyla, including yeasts) or any other eukaryote. The subclass of PTH11 containing the CFEM domain is highly represented in M. grisea.

Conclusion

In M. grisea we identified homologs of known GPCRs and a novel class of GPCR-like receptors specific to filamentous ascomycetes. A member of this new class, PTH11, is required for pathogenesis, thus suggesting roles in pathogenicity for other members. The identified classes constitute the largest number of GPCR-like proteins reported in fungi to date.
  相似文献   

2.
Filamentous fungi respond to hundreds of nutritional, chemical and environmental signals that affect expression of primary metabolism and biosynthesis of secondary metabolites. These signals are sensed at the membrane level by G protein coupled receptors (GPCRs). GPCRs contain usually seven transmembrane domains, an external amino terminal fragment that interacts with the ligand, and an internal carboxy terminal end interacting with the intracellular G protein. There is a great variety of GPCRs in filamentous fungi involved in sensing of sugars, amino acids, cellulose, cell-wall components, sex pheromones, oxylipins, calcium ions and other ligands. Mechanisms of signal transduction at the membrane level by GPCRs are discussed, including the internalization and compartmentalisation of these sensor proteins. We have identified and analysed the GPCRs in the genome of Penicillium chrysogenum and compared them with GPCRs of several other filamentous fungi. We have found 66 GPCRs classified into 14 classes, depending on the ligand recognized by these proteins, including most previously proposed classes of GPCRs. We have found 66 putative GPCRs, representatives of twelve of the fourteen previously proposed classes of GPCRs, depending on the ligand recognized by these proteins. A staggering fortytwo putative members of the new GPCR class XIV, the so-called Pth11 sensors of cellulosic material as reported for Neurospora crassa and some other fungi, were identified. Several GPCRs sensing sex pheromones, known in yeast and in several fungi, were also identified in P. chrysogenum, confirming the recent unravelling of the hidden sexual capacity of this species. Other sensing mechanisms do not involve GPCRs, including the two-component systems (HKRR), the HOG signalling system and the PalH mediated pH transduction sensor. GPCR sensor proteins transmit their signals by interacting with intracellular heterotrimeric G proteins, that are well known in several fungi, including P. chrysogenum. These G proteins are inactive in the GDP containing heterotrimeric state, and become active by nucleotide exchange, allowing the separation of the heterotrimeric protein in active Gα and Gβγ dimer subunits. The conversion of GTP in GDP is mediated by the endogenous GTPase activity of the G proteins. Downstream of the ligand interaction, the activated Gα protein and also the Gβ/Gγ dimer, transduce the signals through at least three different cascades: adenylate cyclase/cAMP, MAPK kinase, and phospholipase C mediated pathways.  相似文献   

3.
Chagas disease (CD) causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF) causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs), which is the main characteristic of the G protein-coupled receptors (GPCRs), including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.  相似文献   

4.
Rhodopsin-type G-protein-coupled receptors (GPCRs) contribute the majority of sensory receptors in vertebrates. With 979 members, they form the largest GPCR family in the sequenced sea urchin genome, constituting more than 3% of all predicted genes. The sea urchin genome encodes at least six Opsin proteins. Of these, one rhabdomeric, one ciliary and two G(o)-type Opsins can be assigned to ancient bilaterian Opsin subfamilies. Moreover, we identified four greatly expanded subfamilies of rhodopsin-type GPCRs that we call sea urchin specific rapidly expanded lineages of GPCRs (surreal-GPCRs). Our analysis of two of these groups revealed genomic clustering and single-exon gene structures similar to the most expanded group of vertebrate rhodopsin-type GPCRs, the olfactory receptors. We hypothesize that these genes arose by rapid duplication in the echinoid lineage and act as chemosensory receptors of the animal. In support of this, group B surreal-GPCRs are most prominently expressed in distinct classes of pedicellariae and tube feet of the adult sea urchin, structures that have previously been shown to react to chemical stimuli and to harbor sensory neurons in echinoderms. Notably, these structures also express different opsins, indicating that sea urchins possess an intricate molecular set-up to sense their environment.  相似文献   

5.
We have carried out an in silico exploration of the genomes of Aspergillus nidulans, Aspergillus fumigatus, and Aspergillus oryzae, and identified components of G-protein/cAMP-mediated signaling. Putative G-protein coupled receptors (GPCRs) were distributed over nine classes. The GPCRs within classes were well conserved among aspergilli but varied in other ascomycetes. As previously observed in A. nidulans and other fungi, three Galpha, one Gbeta, and one Ggamma subunits of G proteins were identified in A. fumigatus, whereas an additional likely non-functional Galpha subunit was present in A. oryzae. While most fungal species had five proteins containing the regulator of G-protein signaling (RGS) domain predicted to participate in attenuation of G-protein signaling, A. fumigatus and A. oryzae had an additional RGS protein (RgsD) related to RgsA of A. nidulans. Genes encoding adenylate cyclase, a regulatory subunit and two catalytic subunits of the cAMP-dependent protein kinase, were also identified in the three aspergilli. Finally, regulators of cAMP signaling including low- and high-affinity phosphodiesterases were identified. Taken together, our data indicate a striking diversity at the GPCR level, but little diversity of components at the G-protein and cAMP-signaling level. This may reflect the abilities of these fungi to adapt to various ecological niches and to integrate diverse environmental cues into highly conserved cellular processes.  相似文献   

6.
Membrane proteins, particularly G-protein coupled receptors (GPCRs), are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.  相似文献   

7.
Fungal parasitism of eggs of the potato cyst nematode Globodera rostochiensis was < 1, 3, and 17% at three sites in Sweden. The fungi isolated most frequently from infected eggs were a Septocylindrium-like fungus ( 19 %), Exophiala spp. (17 %), and Cylindrocarpon spp. (13 %). Verticillium suchtasporium was isolated from infected eggs at a low frequency (4%). In laboratory experiments V. suchlasporium infected 93% of the eggs within cysts after 10 days on dilute corn meal agar. This species showed chitinase and protease activity. Infection of eggs by the Septocylindrium-like fungus was moderate, whereas Cylindrocarpon destructans and Cladosporium cladosporoides did not infect eggs. No chitinase activity was found in these fungi, but protease activity was recorded in all. Growth of the fungi in cysts did not influence the number of physiologically disordered eggs.  相似文献   

8.
Maize is one of the most vital staple crops worldwide. G proteins modulate plentiful signaling pathways, and G protein-coupled receptor-type G proteins (GPCRs) are highly conserved membrane proteins in plants. However, researches on maize G proteins and GPCRs are scarce. In this study, we identified three novel GPCR-Type G Protein (GTG) genes from chromosome 10 (Chr 10) in maize, designated as ZmCOLD1-10A, ZmCOLD1-10B and ZmCOLD1-10C. Their amino acid sequences had high similarity to TaCOLD1 from wheat and OsCOLD1 from rice. They contained the basic characteristics of GTG/COLD1 proteins, including GPCR-like topology, the conserved hydrophilic loop (HL) domain, DUF3735 (domain of unknown function 3735) domain, GTPase-activating domain, and ATP/GTP-binding domain. Subcellular localization analyses of ZmCOLD1 proteins suggested that ZmCOLD1 proteins localized on plasma membrane (PM) and endoplasmic reticulum (ER). Furthermore, amino acid sequence alignment verified the conservation of the key 187th amino acid T in maize and other wild maize-relative species. Evolutionary relationship among plants GTG/COLD1 proteins family displayed strong group-specificity. Expression analysis indicated that ZmCOLD1-10A was cold-induced and inhibited by light. Together, these results suggested that ZmCOLD1 genes had potential value to improve cold tolerance and to contribute crops growth and molecular breeding.  相似文献   

9.
G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.  相似文献   

10.
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins and are the target of approximately half of all therapeutic agents. Agonist ligands bind their cognate GPCRs stabilizing the active conformation that is competent to bind G proteins, thus initiating a cascade of intracellular signaling events leading to modification of the cell activity. Despite their biomedical importance, the only known GPCR crystal structures are those of inactive rhodopsin forms. In order to understand how GPCRs are able to transduce extracellular signals across the plasma membrane, it is critical to determine the structure of these receptors in their ligand-bound, active state. Here, we report a novel combination of purification procedures that allowed the crystallization of rhodopsin in two new crystal forms and can be applicable to the purification and crystallization of other membrane proteins. Importantly, these new crystals are stable upon photoactivation and the preliminary X-ray diffraction analysis of both photoactivated and ground state rhodopsin crystals are also reported.  相似文献   

11.
Soyer OS  Dimmic MW  Neubig RR  Goldstein RA 《Biochemistry》2003,42(49):14522-14531
G-Protein-coupled receptors (GPCRs) are an important superfamily of transmembrane proteins involved in cellular communication. Recently, it has been shown that dimerization is a widely occurring phenomenon in the GPCR superfamily, with likely important physiological roles. Here we use a novel hidden-site class model of evolution as a sequence analysis tool to predict possible dimerization interfaces in GPCRs. This model aims to simulate the evolution of proteins at the amino acid level, allowing the analysis of their sequences in an explicitly evolutionary context. Applying this model to aminergic GPCR sequences, we first validate the general reasoning behind the model. We then use the model to perform a family specific analysis of GPCRs. Accounting for the family structure of these proteins, this approach detects different evolutionarily conserved and accessible patches on transmembrane (TM) helices 4-6 in different families. On the basis of these findings, we propose an experimentally testable dimerization mechanism, involving interactions among different combinations of these helices in different families of aminergic GPCRs.  相似文献   

12.
Understanding the three-dimensional structure of G protein-coupled receptors (GPCRs) has been limited by the technical challenges associated with expression, purification, and crystallization of membrane proteins, and their low abundance in native tissue. In the first large-scale comparative study of GPCR protein production using recombinant baculovirus, we report the characterization of 16 human receptors. The GPCRs were produced in three insect cell lines and functional protein levels monitored over 72 h using radioligand binding assays. Different GPCRs exhibited widely different expression levels, ranging from less than 1 pmol receptor/mg protein to more than 250 pmol/mg. No single set of conditions was suitable for all GPCRs, and large differences were seen for the expression of individual GPCRs in different cell lines. Closely related GPCRs did not share similar expression profiles; however, high expression (greater than 20 pmol/mg) was achieved for over half the GPCRs in our study. Overall, the levels of protein production compared favourably to other published systems.  相似文献   

13.
Two novel classes of antifungal proteins were isolated from radish seeds. The first class consists of two homologous proteins (Rs-AFP1 and Rs-AFP2) that were purified to homogeneity. They are highly basic oligomeric proteins composed of small (5-kDa) polypeptides that are rich in cysteine. Both Rs-AFPs have a broad antifungal spectrum and are among the most potent antifungal proteins hitherto characterized. In comparison with many other plant antifungal proteins, the activity of the Rs-AFPs is less sensitive to the presence of cations. Moreover, their antibiotic activity shows a high degree of specificity to filamentous fungi. The amino-terminal regions of the Rs-AFPs show homology with the derived amino acid sequences of two pea genes specifically induced upon fungal attack, to gamma-thionins and to sorghum alpha-amylase inhibitors. The radish 2S storage albumins were identified as the second novel class of antifungal proteins. All isoforms inhibit growth of different plant pathogenic fungi and some bacteria. However, their antimicrobial activities are strongly antagonized by cations.  相似文献   

14.
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in transmembrane signal transduction and are actively studied because of their suitability as therapeutic small-molecule drug targets. Agonist activation of GPCRs almost invariably results in the receptor being desensitized. One of the key events in receptor desensitization is the sequestration of the receptor from the cell surface into acidic intracellular endosomes. Therefore, a convenient, generic, and noninvasive monitor of this process is desirable. A novel, pH-sensitive, red-excited fluorescent dye, CypHer 5, was synthesized. This dye is non-fluorescent at neutral pH and is fluorescent at acidic pH. Anti-epitope antibodies labeled with this dye were internalized in an agonist concentration- and time-dependent manner, following binding on live cells to a range of GPCRs that had been modified to incorporate the epitope tags in their extracellular N-terminal domain. This resulted in a large signal increase over background. When protonated, the red fluorescence of CypHer 5 provides a generic reagent suitable for monitoring the internalization of GPCRs into acidic vesicles. This approach should be amenable to the study of many other classes of cell surface receptors that also internalize following stimulation.  相似文献   

15.
16.
The development of new analytical methods, aimed at profiling G protein-coupled receptor (GPCR) ligands, regardless of the G protein-coupling pattern of their respective receptor, remains a key goal in drug discovery. Considerable evidence has recently revived the central role that could be played by extracellular-signal-regulated kinase (ERK), the cornerstone protein kinase of the first tyrosine kinase receptor-mediated pathway identified, in response to the activation of various types of GPCRs. Here we reveal a conceptual study in which the potential of ERK phosphorylation is evaluated as a generic readout in response to three different receptors activating three main classes of G proteins: Galphas, Galphai and Galphaq. GPCR-mediated ERK phosphorylation was compared with different readouts such as GTPgammaS, CAMP, or Ca2 +. We propose the measurement of GPCR-activated ERK phosphorylation as an alternative assay to better understand the molecular pharmacology of ligands of promiscuous GPCRs.  相似文献   

17.
Wen Z  Li M  Li Y  Guo Y  Wang K 《Amino acids》2007,32(2):277-283
As an important transmembrane protein family in eukaryon, G-protein coupled receptors (GPCRs) play a significant role in cellular signal transduction and are important targets for drug design. However, it is very difficult to resolve their tertiary structure by X-ray crystallography. In this study, we have developed a Delaunay model, which constructs a series of simplexes with latent variables to classify the families of GPCRs and projects unknown sequences to principle component space (PC-space) to predict their topology. Computational results show that, for the classification of GPCRs, the method achieves the accuracy of 91.0 and 87.6% for Class A, more than 80% for the other three classes in differentiating GPCRs from non-GPCRs and 70% for discriminating between four major classes of GPCR, respectively. When recognizing the structure of GPCRs, all the N-terminals of sequences can be determined correctly. The maximum accuracy of predicting transmembrane segments is achieved in the 7th transmembrane segment of Rhodopsin, which is 99.4%, and the average error is 2.1 amino acids, which is the lowest in all of the segments prediction. This method could provide structural information of a novel GPCR as a tool for experiments and other algorithms of structure prediction of GPCRs. Academic users should send their request for the MATLAB program for classifying GPCRs and predicting the topology of them at liml@scu.edu.cn .  相似文献   

18.
19.
Visual arrestin, betaarrestin1, and betaarrestin2 comprise a family of intracellular proteins that desensitize G protein-coupled receptors (GPCRs). In addition, betaarrestin1 and betaarrestin2 target desensitized receptors to clathrin-coated pits for endocytosis. Whether arrestins differ in their ability to interact with GPCRs in cells is not known. In this study, we visualize the interaction of arrestin family members with GPCRs in real time and in live cells using green fluorescent protein-tagged arrestins. In the absence of agonist, visual arrestin and betaarrestin1 were found in both the cytoplasm and nucleus of HEK-293 cells, whereas betaarrestin2 was found only in the cytoplasm. Analysis of agonist-mediated arrestin translocation to multiple GPCRs identified two major classes of receptors. Class A receptors (beta2 adrenergic receptor, mu opioid receptor, endothelin type A receptor, dopamine D1A receptor, and alpha1b adrenergic receptor) bound betaarrestin2 with higher affinity than betaarrestin1 and did not interact with visual arrestin. In contrast, class B receptors (angiotensin II type 1A receptor, neurotensin receptor 1, vasopressin V2 receptor, thyrotropin-releasing hormone receptor, and substance P receptor) bound both betaarrestin isoforms with similar high affinities and also interacted with visual arrestin. Switching the carboxyl-terminal tails of class A and class B receptors completely reversed the affinity of each receptor for the visual and non-visual arrestins. In addition, exchanging the betaarrestin1 and betaarrestin2 carboxyl termini reversed their extent of binding to class A receptors as well as their subcellular distribution. These results reveal for the first time marked differences in the ability of arrestin family members to bind GPCRs at the plasma membrane. Moreover, they show that visual arrestin can interact in cells with GPCRs other than rhodopsin. These findings suggest that GPCR signaling may be differentially regulated depending on the cellular complement of arrestin isoforms and the ability of arrestins to interact with other cellular proteins.  相似文献   

20.
Understanding the coupling specificity between G protein-coupled receptors (GPCRs) and specific classes of G proteins is important for further elucidation of receptor functions within a cell. Increasing information on GPCR sequences and the G protein family would facilitate prediction of the coupling properties of GPCRs. In this study, we describe a novel approach for predicting the coupling specificity between GPCRs and G proteins. This method uses not only GPCR sequences but also the functional knowledge generated by natural language processing, and can achieve 92.2% prediction accuracy by using the C4.5 algorithm. Furthermore, rules related to GPCR-G protein coupling are generated. The combination of sequence analysis and text mining improves the prediction accuracy for GPCR-G protein coupling specificity, and also provides clues for understanding GPCR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号